A dynamic analysis of the effects of word-of-mouth on online brand communities
Un análisis dinámico de los efectos del boca a boca en las comunidades de marcas en línea
Milton M. Herrera , Leonela S. León , Lorena K. Vargas-Ortiz
Suma de Negocios, 9(20), 77-85, julio-diciembre 2018, ISSN 2215-910X
http://dx.doi.org/10.14349/sumneg/2018.V9.N20.A1
Received on May 23rd 2018
Accepted on August 8th 2018
Available online on September 8th 2018
El aumento de las comunidades de marcas es un aspecto importante que afecta el proceso de compra de los consumidores en línea. Este artículo tiene como objetivo evaluar los efectos del boca a boca (WOM, por sus siglas en inglés) en las comunidades de marcas en línea de la industria de alimentos en Colombia. El artículo presenta un modelo de simulación del proceso de compra que permite comprender la estrategia de marketing viral y responder al interrogante: ¿Cuál es el papel de WOM en las comunidades de marcas en línea y su dinámica en el consumo de alimentos? El modelo muestra el cambio de los estados de los consumidores y permite comprender el comportamiento en el tiempo del desarrollo de la marca, el WOM, los efectos virales en el mercado y el análisis de la penetración en el mercado o la adopción de una compleja estructura de servicio en ciclo cerrado. Estos hallazgos se pueden utilizar para determinar la política de comercialización adecuada que podría adoptarse para el agro negocio.
Palabras clave:
Boca a boca,
mercado viral;
modelado de simulación;
comunidades de marca en línea;
consumo de alimentos
The increase of brand communities is an important aspect that affects the purchase process of online consumers. This research aims to assess the effects of word-of-mouth (WOM) on online brand communities in the food industry in Colombia. The paper presents a simulation model of online consumers’ purchase processes which allows us to understand the viral marketing strategy and answers the following question: What is the function of WOM for online brand communities and what role does it play in food consumption? The model shows the change of consumer states and allows the understanding of behavior during the development of the brand, WOM, the viral effects in the market and the analysis of market penetration or the adoption of a complex service structure in closed cycles. The findings from research into these issues can be used as guidelines to determine a suitable marketing policy that could be adopted for agribusiness.
Keywords:
Word-of-mouth;
Viral marketing;
Simulation modeling;
Online brand communities;
Food consumption
JEL Classification:
M31, C63, Q13, M39
Aaker, J., Benet-Martínez, V. & Garolera, J. (2001). Consumption Agag, G., El-Masry, A. A. (2016). Understanding consumer intention to participate in online travel community and effects on consumer intention to purchase travel online and WOM: An integration of innovation diffusion theory and TAM with trust. Computers in Human Behavior, 60, 97–111. doi:https://doi.org/10.1016/j.chb.2016.02.038
Alvarez-Milán, A., Felix, R., Rauschnabel, P. A. & Hinsch, C. (2018). Strategic customer engagement marketing: A decision making framework. Journal Business Research, 92, 61–70. doi:https://doi.org/10.1016/j.jbusres.2018.07.017
Balaji, M. S., Khong, K. W. & Chong, A. Y. L. (2016). Determinants of negative word-of-mouth communication using social networking sites. Information & Management, 53, 528–540. doi:https://doi.org/10.1016/j.im.2015.12.002
Basri, N. A. H., Ahmad, R., Anuar, F. I. & Ismail, K. A. (2016). Effect of Word of Mouth Communication on Consumer Purchase Decision: Malay Upscale Restaurant. Procedia – Social and Behavioral Sciences, 222, 324–331. doi:https://doi.org/10.1016/j.sbspro.2016.05.175
Berger, J. & Schwartz, E. M. (2011). What Drives Immediate and Ongoing Word of Mouth? Journal of Marketing Research, 48, 869–880. doi:10.1509/jmkr.48.5.869
Bianchi, C. (2016). System Dynamics for Performance Management (First. ed.). Switzerland: Springer.
Chen, K., Luo, P. & Wang, H. (2017). An influence framework on product word-of-mouth (WoM) measurement. Information & Management, 54, 228–240. doi:https://doi.org/10.1016/j.im.2016.06.010
Chen, Z., Lurei, N. (2013). Temporal Contiguity and Negativity Bias in the Impact of Online Word of Mouth. Journal of Marketing Research, 50, 463–476. doi:10.1509/jmr.12.0063
Chevalier, J. A. & Mayzlin, D. (2006). The effect of word of mouth on sales: Online book reviews. Journal of Marketing Research, 43, 345–354.
Chu, S. C. & Sung, Y. (2015). Using a consumer socialization framework to understand electronic word-of-mouth (eWOM) group membership among brand followers on Twitter. Electronic Commerce Research Applications, 14, 251–260. doi:10.1016/j.elerap.2015.04.002
Coleman, J. S., Katz, E. & Menzel, H. (1966). Medical innovation: a diffusion study. Administrative Science Quarterly, 12, 481–483.
Cosenz, F. & Noto, G. (2016). Applying System Dynamics Modelling to Strategic Management: A Literature Review. Systems Research and Behavioral Science, 33, 703–741. doi:10.1002/sres.2386
De Pelsmacker, P., van Tilburg, S. & Holthof, C. (2018). Digital marketing strategies, online reviews and hotel performance. International Journal of Hospitality Management, 72, 47–55. doi:10.1016/j.ijhm.2018.01.003
Eelen, J., Özturan, P. & Verlegh, P. W. J. (2017). The differential impact of brand loyalty on traditional and online word of mouth: The moderating roles of self-brand connection and the desire to help the brand. International Journal of Research Marketing, 34, 872–891. doi:https://doi.org/10.1016/j.ijresmar.2017.08.002
Ford, D. N. & Sterman, J. D. (1998). Dynamic modelling of product development processes. System Dynamics Review, 14, 31-68. doi:10.1002/(SICI)1099-1727(199821)14:1<31::AID-SDR141>3.0.CO;2-5
Foroudi, P., Jin, Z., Gupta, S., Foroudi, M. M. & Kitchen, P.J. (2018). Perceptional components of brand equity: Configuring the Symmetrical and Asymmetrical Paths to brand loyalty and brand purchase intention. Journal of Business Research, 89, 462–474. doi:https://doi.org/10.1016/j.jbusres.2018.01.031
Forrester, J. W. (1997). Industrial dynamics. Journal of the Operational Research Society, 48, 1037–1041.
Françoise, S. & Tosan, V. (2018). Does brand-consumer social sharing matter? A relational framework of customer engagement to brand-hosted social media. Journal Business Research, 85, 175–184.
Gök, O., Peker, S. (2017). Understanding the links among innovation performance, market performance and financial performance. Review of Managerial Science, 11, 605–631. doi:10.1007/s11846-016-0198-8
Harrigan, P., Evers, U., Miles, M. P. & Daly, T. (2018). Customer engagement and the relationship between involvement, engagement, self-brand connection and brand usage intent. Journal of Business Research, 88, 388–396. doi:https://doi.org/10.1016/j.jbusres.2017.11.046
Herrera-Ramírez, M. M., Orjuela-Castro, J., Sandoval-Cruz, H. & Martínez-Vargas, M. A. (2017). Modelado dinámico y estratégico de la cadena agroindustrial de frutas. Bogotá D.C.: Universidad Piloto de Colombia.
Ho, J. Y. C. & Dempsey, M. (2010). Viral marketing: Motivations to forward online content. Journal of Business Research, 63, 1000–1006. doi:https://doi.org/10.1016/j.jbusres.2008.08.010
Jiang, Y., Ramkisssoon, H. & Mavondo, F. (2016). Destination marketing and visitor experiences: The development of a conceptual framework. Journal of Hospitality Marketing & Management, 25, 653-675.
Katz, E., Lazarsfeld, P. F. & Roper, E. (1955). Personal influence: The part played by people in the flow of mass communications. London, United Kingdom,Routledge.
Korres, G. M. (2012). An Approach on Spatial Integration and Diffusion Process. Journal of Settlements Spatial Planning, 3, 57.
Krush, M. T., Agnihotri, R. & Trainor, K. J. (2016). A contingency model of marketing dashboards and their influence on marketing strategy implementation speed and market information management capability. European Journal of Marketing, 50, 2077–2102. doi:10.1108/EJM-06-2015-0317
Kumar, V. & Reinartz, W. (2016). Creating Enduring Customer Value. Journal of Marketing, 80, 36–68. doi:10.1509/jm.15.0414
Lee, S., Han, W. & Park, Y. (2015). Measuring the functional dynamics of product-service system: A system dynamics approach. Computers & Industrial Engineering, 80, 159–170. doi:https://doi.org/10.1016/j.cie.2014.12.005
Lee, W. I., Cheng, S. Y. & Shih, Y. T. (2017). Effects among product attributes, involvement, word-of-mouth, and purchase intention in online shopping. Asia Pacific Management Review, 22, 223–229. doi:10.1016/j.apmrv.2017.07.007
Li, F., Du, T. C. (2017). The effectiveness of word of mouth in offline and online social networks. Expert System with Applications, 88, 338–351. doi:10.1016/j.eswa.2017.07.004
Li, P., Yang, X., Wu, Y., He, W. & Zhao, P. (2018a). Discount pricing in word-of-mouth marketing: An optimal control approach. Physica A: Statistical Mechanics its Applications, 505, 512–522. doi:10.1016/j.physa.2018.03.062
Li, P., Yang, X., Yang, L. X., Xiong, Q., Wu, Y. & Tang, Y. Y. (2018b). The modeling and analysis of the word-of-mouth marketing. Physica A: Statistical Mechanics its Applications, 493, 1–16. doi:10.1016/j.physa.2017.10.050
Lim, B. C. & Chung, C. M. Y. (2011). The impact of word-of-mouth communication on attribute evaluation. Journal of Business Research, 64, 18–23. doi:https://doi.org/10.1016/j.jbusres.2009.09.014
Lovett, M. J., Peres, R. & Shachar, R. (2013). On Brands and Word of Mouth. Journal of Marketing Research, 50, 427–444. doi:10.1509/jmr.11.0458
Michelfelder, R. A. & Morrin, M. (2005). Overview of New Product Diffusion Sales Forecasting Models. New Jersey, AUS Consultants.
Mishra, P., Bakshi, M., Singh, R. (2016). Impact of consumption emotions on WOM in movie consumption: Empirical evidence from emerging markets. Australasian Marketing Journal, 24, 59–67. doi:https://doi.org/10.1016/j.ausmj.2015.12.005
Misirlis, N. & Vlachopoulou, M. (2018). Social media metrics and analytics in marketing – S3M: A mapping literature review. International Journal of Information Management, 38, 270–276. doi:10.1016/j.ijinfomgt.2017.10.005
Mollona, E. & Morecroft, J. (2008). Strategic Modelling and Business Dynamics. A Feedback Systems Approach. John Wiley & Sons. doi: 10.1002/9781119176831.
Observatorio ecommerce. (2018). Estudio de Transacciones Digitales en Colombia 2016-2017. Retreived from https://www.observatorioecommerce.com.co/wp-content/uploads/2018/04/4to-Estudio-de-Transacciones-Digitales-en-Colombia-2016-2017.pdf
Orjuela-Castro, J. & Adarme-Jaimes, W. (2017). Dynamic Impact of the Structure of the Supply Chain of Perishable Foods on Logistics Performance and Food Security. Journal of Industrial Engineering and Management, 10, 687–710.
Orjuela-Castro, J., Herrera-Ramirez, M. & Adarme-Jaimes, W. (2017). Warehousing and transportation logistics of mango in Colombia : A system dynamics model. Revista Facultad de Ingeniería, 26, 71–85. doi:http://dx.doi.org/10.19053/01211129
Orjuela-Castro, J. A., Sanabria-Coronado, L. A. & Peralta-Lozano, A. M. (2017). Coupling facility location models in the supply chain of perishable fruits. Research in Transportation Business & Management, 24, 73–80. doi:10.1016/j.rtbm.2017.08.002
Park, M. S., Shin, J. K. & Ju, Y. (2017). Attachment styles and electronic word of mouth (e-WOM) adoption on social networking sites. Journal of Business Research. In press. doi:https://doi.org/10.1016/j.jbusres.2017.09.020
Peres, R., Muller, E. & Mahajan, V. (2010). Innovation diffusion and new product growth models: A critical review and research directions. International Journal of Research in Marketing, 27, 91–106. doi:10.1016/j.ijresmar.2009.12.012
Prentice, C. & Loureiro, S. M. C. (2018.) Consumer-based approach to customer engagement – The case of luxury brands. Journal of Retailing and Consumer Services, 43, 325–332. doi:https://doi.org/10.1016/j.jretconser.2018.05.003
Reimer, T. & Benkenstein, M. (2016). When good WOM hurts and bad WOM gains: The effect of untrustworthy online reviews. Journal of Business Research, 69, 5993–6001. doi:https://doi.org/10.1016/j.jbusres.2016.05.014
Relling, M., Schnittka, O., Sattler, H. & Johnen, M. (2016). Each can help or hurt: Negative and positive word of mouth in social network brand communities. International Journal of Research in Marketing, 33, 42–58. doi:10.1016/j.ijresmar.2015.11.001
Repenning, N. P. (2002). A Simulation-Based Approach to Understanding the Dynamics of Innovation Implementation. Organization Science, 13, 109–127. doi:10.1287/orsc.13.2.109.535
Rintamäki, T. & Kirves, K. (2017). From perceptions to propositions: Profiling customer value across retail contexts. Journal of Retailing Consumer Services, 37, 159–167. doi:10.1016/j.jretconser.2016.07.016
Sicilia, M., Delgado-Ballesterer, E. & Palazon, M. (2016). The need to belong and self-disclosure in positive word-of-mouth behaviours: The moderating effect of self–brand connection. Journal of Consumer Behaviour, 15, 60–71. doi:10.1002/cb.1533
Standing, C., Holzweber, M. & Mattsson, J. (2016). Exploring emotional expressions in e-word-of-mouth from online communities. Information Processing & Management, 52, 721–732. doi:https://doi.org/10.1016/j.ipm.2016.01.001
Sterman, J. D. (2000). Business dynamics: systems thinking and modeling for a complex world. Boston: Irwin/McGraw-Hill.
Trusov, M., Bucklin, R. E. & Pauwels, K. (2009). Effects of word-of-mouth versus traditional marketing: findings from an internet social networking site. Journal of Marketing, 73, 90–102.
Villanueva, J., Yoo, S. & Hanssens, D. M. (2008). The Impact of Marketing-Induced Versus Word-of-Mouth Customer Acquisition on Customer Equity Growth. Journal of Marketing Research, 45, 48–59. doi:10.1509/jmkr.45.1.48
Walrave, B. & Raven, R. (2016). Modelling the dynamics of technological innovation systems. Research Policy, 45, 1833–1844. doi:10.1016/j.respol.2016.05.011
Wang, J. J. & Zhang, C. (2017). The impact of value congruence on marketing channel relationship. Industrial Marketing Management, 62, 118–127. doi:https://doi.org/10.1016/j.indmarman.2016.08.004
Wouters, M. & Kirchberger, M. A. (2015). Customer value propositions as interorganizational management accounting to support customer collaboration. Industrial Marketing Management, 46, 54–67. doi:10.1016/j.indmarman.2015.01.005
Wu, J., Fan, S. & Zhao, J. L. (2018). Community engagement and online word of mouth: An empirical investigation. Information & Management, 55, 258–270. doi:10.1016/j.im.2017.07.002
Dimensions
PlumX
Instituciones
Università Degli Studi di Palermo and Universidad Militar Nueva Granada, Faculty of Economic Sciences, Bogotá, Colombia
Universidad Piloto de Colombia and Escuela Europea de Dirección y Empresa, Faculty of Social Sciences and Business, Bogotá, Colombia
Copyright © 2018. Fundación Universitaria Konrad Lorenz, Colombia

