Surviving the Titanic tragedy: A sociological study using machine learning models
Sobreviviendo a la tragedia del Titanic: un estudio sociológico utilizando modelos de aprendizaje automático
Kshitiz Gupta , Prayas Sharma , Carlos N. Bouza Herreras
Suma de Negocios, 9(20), 86-92, julio-diciembre 2018, ISSN 2215-910X
http://dx.doi.org/10.14349/sumneg/2018.V9.N20.A2
Received on April 24th 2018
Accepted on August 16th 2018
Available online on September 17th 2018
Las transacciones sociológicas cumplen un papel importante en el comportamiento humano y la posición social. El Titanic era la paradoja perfecta ya que los pasajeros pertenecían a grupos de altos ingresos, de ingresos medios y de bajos ingresos. Es interesante ver cómo los patrones en el sentido sociológico decidieron cómo iba a sobrevivir. Los datos fueron recolectados del sitio web “Kaggle.com” y se aplicaron algoritmos de aprendizaje automático después de un análisis visual y exploratorio. La hipótesis, las mujeres y los niños se salvaron y se hicieron famosos después de que la película Titanic de Steven Spielberg (1975) se pusiera a prueba mediante un algoritmo forestal aleatorio junto con la hipótesis de que la densidad familiar desempeñaba un papel importante en la supervivencia. El resultado enumeró ese título y el sexo fue el factor más importante que decidió la tasa de supervivencia de los pasajeros.
Palabras clave:
Branding,
Titanic,
posición social,
sobrevivientes,
género,
tamaño de la familia
Sociological transactions play an important role in human behaviour and social standing. The Titanic was the perfect example as the passengers belonged to high income, middleincome, and low-income groups. It is interesting to see how social factors influenced who was going to survive. The data was collected from the website “Kaggle.com”, and machine learning algorithms were applied after carrying out an exploratory and visual analysis. The hypothesis that women and children were saved (which became famous after Steven Spielberg’s Titanic (1975)) was tested by random forest algorithm as well as the hypothesis that family density played a major role in survival. The results showed that title and sex were the most important factors influencing if the passenger was to survive.
Keywords:
Titanic,
social class,
survived,
sex,
family size
JEL Classification:
C02, C12, D91, Q59
Beesley, L. (1912). The loss of the S.S.Titanic. New York: Dover Publications.
Breiman. (2001). Random forests. Machine Learning, 45(1), 5-32.
Bryceson, D. (1912). The Titanic disaster: British National Press. New York: W.W. Norton & Company Inc.
Chen, Y., Sze, V. & Zhang, Z. (2017). Hardware for machine learning: Challenges and opportunities. 2017 IEEE Custom Integrated Circuits Conference, 1-8.
Cortes, C. & Vapnik, V. (1995). Support vector networks. Machine Learning, 20, 273-297.
Dacy, D. C. & Kunreuther, H. C. (1969). The economics of natural disasters. New York: Free Press.
Elinder, M., & Erixson, O. (2012). Gender, social norms, and survival in maritime disasters. Proceedings of the National Academy of Sciences, 109(33), 13220-13224.
Elster, J. (2007). Explaining social behavior. More nuts and bolts for the social sciences. Cambridge: Cambridge University Press.
Enarson, E. (2000). Gender and natural disasters (Working Paper 1). Recovery and Reconstruction Department, Geneva, September.
Erel, I., Stern, C. T. & Weisbach, M. (2017). Selecting directors using machine learning (Working Paper). University of Washington.
Frey, B. S., Savage, D. A., & Torgler, B. (2010). Noblesse oblige? Determinants of survival in a life and death situation. J Econ Behav Organ, 74, 1-11.
Frey, B. S., Savage, D. A. & Torgler, B. (2011). Behavior under extreme conditions: The Titanic disaster. J Econ Perspect, 25, 209-222.
Frey, B., Savage, D. & Torgler, B. (2001). Behavior under extreme conditions: The Titanic disaster. Journal of Economic Perspectives, 25(1), 209-222. Doi: 10.1257/ jep.25.1.209.
Geller, J. B. (1998). Titanic: Women and children first. New York: W.W. Norton & Company Inc.
Gleicher, D. & Stevans, L. K. (2004). Who survived the Titanic? A logistic regression analysis. Int Rev Marit Hist, 16, 61-94.
Hall, W. (1986). Social class and survival on the S.S. Titanic. Soc Sci Med 22, 687-690.
Labib, A. & Read, M. (2013). Not just rearranging the deckchairs on the Titanic: Learning from failures through risk and reliability analysis. Safety Science, 51, 397-413.
Malioutov, D. M., Varshney, K. R., Emad, A. & Dash, S. (2017). Learning interpretable classification rules with Boolean compressed sensing. In A. A. Editor & B. B. Editor (Eds.), Transparent data mining for big and small data (pp. 95-121). Springer International Publishing.
Mawson, A. R. (2007). Mass panic and social attachment: The dynamics of human behavior. Ashgate Publishing, Aldershot, UK.
Mersey, L. (1912). Loss of the steamship Titanic. British Sessional Papers House of Commons, 1911-1912.
Neller, T. W. (2017). AI education: Machine-learning resources. AI Matters, 3(2), 14-15.
Russell, J. S. & Norvig, P. (2003). Artificial intelligence: A modern approach, 1(1) Pearson Education, 697-702.
Silver, D., Huang ,A., Maddison, C., Guez, A., Sifre, G., Driessche, G., Schrittwieser., Antonoglou, I., Panneershelvam, V., Lancot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepal, T. & Hassabis, D. (2016). Mastering the game of go with deep neural networks and tree search. Nature, 529, 484-489.
Titanic: Machine Learning from Disaster. (2013). Retrieved from: https://www.kaggle.com.
Tuckett, D. (1976). An introduction to medical sociology. Tavistock Publications, London. Journal of Social Policy, 6(2), 227-229.
Turner, B. A. & Pidgeon, N. F. (1997). Man-made disasters (2nd ed). London: Butterworth Heinemann.
Whitley, A. (2015). Using statistical learning to predict survival of passengers on the RMS Titanic. Kansas: Kansas State University Manhattan.
Dimensions
PlumX
Instituciones
Department of Decision Sciences, School of Business, University of Petroleum and Energy Studies, Dehradun, India
Department of Applied Mathematics, University of Havana, Cuba
Copyright © 2018. Fundación Universitaria Konrad Lorenz, Colombia

