Causalidad y cointegración del precio del bitcoin durante la pandemia

Causality and cointegration of bitcoin prices during the pandemic

Ángel Enrique Chico-Frías  , Luis Morales La Paz 

Suma de Negocios, 16(34), 80-91, enero-junio 2025, ISSN 2215-910X

https://doi.org/10.14349/sumneg/2025.V16.N34.A8

Recibido: 6 de noviembre de 2024
Aceptado: 17 de enero de 2025
Online: 31 de marzo de 2025

Resumen

Introducción/objetivo: durante la pandemia de COVID-19, el precio del bitcoin experimentó una volatilidad significativa. Mientras algunos agentes optaron por mantener activos de bajo riesgo, otros buscaron refugio en las criptomonedas. El objetivo general de esta investigación es evaluar los eventos aleatorios y los efectos de corto y largo plazo en el precio del bitcoin durante este período, describir su comportamiento y determinar las relaciones temporales entre su precio y las variables derivadas del confinamiento.

Metodología: se analizó el precio del bitcoin desde diciembre de 2020 hasta julio de 2023. Se emplearon enfoques metodológicos como el modelo econométrico de causalidad de Granger, la cointegración de Engle-Granger, la cointegración de Johansen y el modelo de corrección del vector de error (MCVE). Estos métodos permitieron examinar si existe una relación entre la criptomoneda, los instrumentos financieros y las variables generadas por la pandemia.

Resultados: se encontró que la serie de personas totalmente vacunadas genera causalidad de Granger con el precio de cierre del bitcoin, siendo esta relación unidireccional. Además, se identificó cointegración de Engle-Granger entre el precio de cierre del bitcoin y el total de casos de COVID-19, así como entre el índice ^TNX (rendimiento de bonos del Tesoro a 10 años) y el precio de cierre. Sin embargo, no se encontró cointegración al aplicar el método de Johansen. El modelo de corrección del vector de error (MCVE) reveló que existe un ajuste entre el comportamiento de corto y largo plazo entre las variables independientes, y número de personas totalmente vacunadas, así como con el ^TNX.

Conclusiones: el precio de cierre del bitcoin muestra un comportamiento autorregresivo en conjunto con la variable de personas totalmente vacunadas, siendo ambas significativas con 10 retardos y utilizando primeras diferencias. Esto sugiere que el avance en la vacunación y los cambios en el índice ^TNX pueden influir en el precio de la criptomoneda a corto y largo plazo.


Palabras clave:
Causa-efecto,
confinamiento,
coronavirus,
criptomoneda,
equilibrio en el largo plazo,
vacunas.

Códigos JEL:
D53, G15, G11, G12

Abstract

Introduction/objective: the COVID-19 pandemic triggered unprecedented volatility in Bitcoin prices. While some investors shifted toward low-risk assets, others turned to cryptocurrencies as a potential safe haven. This study aims to assess the impact of random events and the short- and long-term effects on Bitcoin prices during the pandemic. Specifically, it seeks to describe Bitcoin’s price behavior and examine the temporal relationships between its price and variables influenced by lockdown measures.

Methodology: the analysis covers Bitcoin prices from December 2020 to July 2023. The methodological framework includes the Granger Causality test, Engle-Granger Cointegration, Johansen Cointegration, and the Vector Error Correction Model (VECM). These approaches were employed to investigate potential relationships between Bitcoin, financial instruments, and pandemic-related variables.

Results: the findings indicate that the series of fully vaccinated individuals Granger-causes Bitcoin closing prices, with a unidirectional relationship. Engle-Granger cointegration was identified between Bitcoin closing prices and total COVID-19 cases, as well as between the ^TNX (10-Year Treasury Yield) and Bitcoin closing prices. However, Johansen Cointegration did not reveal any significant relationships. The Vector Error Correction Model (VECM) demonstrated an adjustment mechanism between short- and long-term dynamics among independent variables, and the number of vaccinated individuals as well as with ^TNX.

Conclusions: bitcoin closing prices exhibit autoregressive behavior in conjunction with the variable of fully vaccinated individuals, with both showing significance at 10 lags using first differences. These results suggest that vaccination progress and fluctuations in the ^TNX index may influence Bitcoin prices in both the short and long term. This study underscores the importance of considering external shocks, such as pandemics, when analyzing cryptocurrency markets.


Keywords:
Causality,
lockdown,
coronavirus,
cryptocurrency,
long-term equilibrium,
vaccines.

Artículo Completo
Bibliografía

Ampountolas, A. (2023). The effect of COVID-19 on cryptocurrencies and the stock market volatility: A two-stage DCC-EGARCH model analysis. Journal of Risk and Financial Management, 1-17.

Anandhabalaji, V., Babu, M., Gayathri, J., Sathya, J., Indhumathi, G., Brintha, R., & Michael, J. (2023). Examining the volatility of conventional cryptocurrencies and sustainable cryptocurrency during COVID-19: Based on energy consumption. International Journal of Energy Economics and Policy, 344-352.

Ashraf, S., Martins de Almeida, A., Naz, I., & Latief, R. (2023). Diversification of the Islamic stock market, Bitcoin, and Bullions in response to the Russia-Ukraine conflict and the COVID-19 outbreak. Heliyon, 1-12.

Ashtana, V. (2024). The inefficiency of Bitcoin and the COVID-19 pandemic. Review of Applied Socio-Economic Research, 50-60.

Cevik, E., Gunay, S., Dibooglu, S., & Yildirim, D. (2023). The impact of expected and unexpected events on Bitcoin price development: Introduction of futures market and COVID-19. Finance Research Letters, 1-7.

Conlon, T., Corbet, S., & McGee, R. (2020). Are cryptocurrencies a safe haven for equity markets? An international perspective from the COVID-19 pandemic. Research in International Business and Finance, 1-27.

De la Rosa Flores, C. (2022). Bitcoin, divisas y bolsas de valores: un análisis de correlación durante la pandemia del COVID-19. Excelencia Administrativa Online, 35-51.

Demir, E., Bilgin, M., Karabulut, G., & Doker, A. (2020). The relationship between cryptocurrencies and COVID-19 pandemic. Eurasian Economic Review, 349-360.

Dwita Mariana, C., Ekaputra, I., & Husodo, Z. (2020). Are Bitcoin and Ethereum safe-havens for stocks during the COVID-19 pandemic? Finance Research Letters, 1-7.

Elsayed, A., Gozgor, G., & Lau, C. K. (2022). Risk transmissions between Bitcoin and traditional financial assets during the COVID-19 era: The role of global uncertainties. International Review of Financial Analysis, 1-12.

Foroutan, P., & Lahmiri, S. (2024). Connectedness of cryptocurrency markets to crude oil and gold: An analysis of the effect of COVID-19 pandemic. Financial Innovation, 1-23.

Goodell, J., & Goutte, S. (2020). Co-movement of COVID-19 and Bitcoin: Evidence from wavelet coherence analysis. Finance Research Letters, 1-6.

Granger, C. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 424-438.

Granger, C. (2004). Análisis de series temporales, cointegración y aplicaciones. Revista Asturiana de Economía, 197-206.

Guo, X. (2024). Exploring Bitcoin dynamics against the backdrop of COVID-19: An investigation of major global events. Financial Innovation, 1-25.

Hernández, R., Fernández, C., & Baptista, M. (2014). Metodología de la investigación. McGraw-Hill.

Iqbal, N., Fareed, Z., Wan, G., & Shahzad, F. (2021). Asymmetric nexus between COVID-19 outbreak in the world and cryptocurrency market. International Review of Financial Analysis, 1-16.

Kim, Y., Erkan, T., Ghosh, A., & Asad, M. (2024). Investor behavior in gold, us dollars and cryptocurrency during global pandemics. Economies, 1-14.

Klose, J. (2022). Comparing cryptocurrencies and gold – a system – GARCH – approach. Eurasian Economic Review, 653-679.

Kraehenbuehl, M., & Osterrieder, J. (2022). The efficient market hypothesis for Bitcoin in the context of neural networks. arXiv, 1-28.

Le Thi Thuy, V., Oanh, T., & Ha, N. (2024). The roles of gold, US dollar, and Bitcoin as safe-haven assets in times of crisis. Cogent Economics & Finance, 1-17.

López, J., & Mota, M. (2022). Derrame de volatilidad y correlación dinámica entre el precio del bitcoin, el petróleo, el oro y la volatilidad del mercado de valores. Análisis Económico, 99-117.

Martínez, A. M. (2013). Diseño de investigación. Principios teórico-metodológicos y prácticos para su concreción. Anuario Escuela de Archivología, IV 2012-2013, Universidad Nacional de Córdoba. https://revistas.unc.edu.ar/index.php/anuario/article/view/12664/13040

Mathieu, E., Ritchie, H., Rodés-Guirao, L., Appel, C., Giattino, C., Hasell, J., …, & Roser, M. (2023, octubre 26). Our World in Data. COVID-19. https://ourworldindata.org/covid-deaths

Minutolo, M., Kristjanpoller, W., & Dheeriya, P. (2022). Impact of COVID-19 effective reproductive rate on cryptocurrency. Financial Innovation, 1-27.

Mokni, K., El Montasser, G., Ajmi, A., & Bouri, E. (2024). On the efficiency and its drivers in the cryptocurrency market: The case of Bitcoin and Ethereum. Financial Innovation, 1-25.

Nguyen, K. Q. (2021). The correlation between the stock market and Bitcoin during COVID-19 and other uncertainty periods. Finance Research Letters, 1-5.

Nurmatova, H. (2024). Coherence between cryptocurrency and gold markets: Pre and during the pandemic period. Modern Science and Research, 1-11.

Olivares, H. (2022). Estrategia paracaídas: propuesta de cobertura para el mercado bursátil mexicano ante la llegada de ómicron. Análisis Económico, 119-139.

Panyagometh, K. (2024). The effect of COVID-19 and U.S. monetary policy on Bitcoin and stock market volatility: An application of DCC-GARCH model. Humanities & Social Sciences Communications, 1-15.

Pham, H., Tran, T., Nguyen, N., & Duong, K. (2024). The revesal in the cryptocurrency market before and during the COVID-19 pandemic: Does investor attention matter!? Plos One, 1-23.

Rojas, M. (2015). Tipos de investigación científica: una simplificación de la complicada incoherente nomenclatura y clasificación. Revista Electrónica de Veterinaria, 1-14.

Sarkodie, S., Ahmed, M., & Owusu, P. (2021). COVID-19 pandemic improves market signals of cryptocurrencies-evidence from Bitcoin, Bitcoin Cash, Ethereum, and Litecoin. Finance Research Letters, 1-10.

Shaik, M., Rabbani, M., Atif, M., Aysan, A., Alam, M., & Kayani, U. (2024). The dynamic volatility nexus of geo-political risks, stocks, bond, bitcoin, gold and olil during COVID-19 and Russian-Ukraine war. Plos One, 1-16.

Stock, J., & Watson, M. (2012). Introducción a la econometría. Pearson Educación, S. A.

Taboada, E., & Sámano, M. (2003). Análisis de cointegración entre el sistema financiero y la economía real en México. Revista Análisis Económico, 141-166.

Tekin, B. (2024). Structural breaks and co-movements of Bitcoin and Ethereum: Evidence from the COVID-19 pandemic period. Journal of Central Banking Theory and Practice, 41-70.

Tekin, B., Temelli, F., & Dirir, S. (2024). Co-movement of bitcoin, gold, USD, oil and VIX: Evidence of wavelet coherence and DCC-GARCH from the pandemic period. Serbian Journal of Management, 243-273.

Terraza, V., Boru Ipek, A., & Rounaghi, M. (2024). The nexus between the volatility of bitcoin, gold, and American stock markets during the COVID-19 pandemic: Evidence from VAR-DCC-EGARCH and ANN models. Financial Innovation, 1-34.

Vidal-Tomás, D. (2021). Transitions in the cryptocurrency market during the COVID-19 pandemic: A network analysis. Finance Research Letters, 1-11.

Wen, F., Tong, X., & Ren, X. (2022). Gold or Bitcoin, which is the safe haven during the COVID-19 pandemic? International Review of Financial Analysis, 1-13.

Wooldridge, J. (2010). Introducción a la econometría. Cengage Learning.

Yahoo Finanzas. (2023, octubre 27). Bitcoin USD (BTC-USD). https://lc.cx/X4SLty

Zhang, Y., Zhu, P., & Xu, Y. (2021). Has COVID-19 changed the hedge effectiveness of Bitcoin? Frontiers in Public Health, 1-12.

PDF
EPUB
Métricas

Dimensions

PlumX


Instituciones

Universidad Técnica de Ambato, Ambato, Ecuador
Universidad Católica Andrés Bello, Caracas, Venezuela
Copyright © 2025. Fundación Universitaria Konrad Lorenz, Colombia

(Visited 45 times, 1 visits today)