Critical success factors for business intelligence implementation in public universities
Factores críticos de éxito para la implementación de sistemas de inteligencia empresarial en universidades públicas
Katherine Maldonado Romero
,
Claudia Alexandra Garzon Santos
Suma de Negocios, 16(34), 66-79, enero-junio 2025, ISSN 2215-910X
https://doi.org/10.14349/sumneg/2025.V16.N34.A7
Received: September 24, 2024
Accepted: December 13, 2024
Online: March 31, 2025
Introducción/Objetivo: este artículo examina la adopción de sistemas de inteligencia empresarial en universidades públicas de Bogotá, Colombia, destacando su papel en la mejora de los procesos de toma de decisiones y la adaptabilidad institucional durante la pandemia de COVID-19. El objetivo principal es identificar los factores críticos de éxito que sustentan la implementación efectiva de la inteligencia empresarial en instituciones de educación superior.
Metodología: la investigación adopta un enfoque cualitativo, combinando una revisión exhaustiva de la literatura con entrevistas semiestructuradas para la recopilación de datos. Los participantes incluyen líderes académicos y profesionales de tecnología de la información de varias universidades públicas de Bogotá. El estudio analiza sus experiencias y perspectivas sobre los sistemas de inteligencia empresarial, clasificando los factores críticos de éxito en tres dimensiones clave: tecnología, personas y procesos.
Resultados: los hallazgos destacan varios factores esenciales para la adopción de la inteligencia empresarial, como la alta calidad y contenido de los datos, la alineación estratégica de las iniciativas de inteligencia empresarial con los objetivos institucionales, marcos de gobernanza robustos y la interoperabilidad de los sistemas universitarios. Estos factores se compararon con la literatura existente, ofreciendo una comprensión detallada de su papel crítico en la implementación exitosa de sistemas de inteligencia empresarial.
Conclusiones: esta investigación proporciona ideas prácticas para las universidades públicas que buscan implementar sistemas de inteligencia empresarial. Los factores críticos de éxito identificados sirven como un marco práctico para mejorar las iniciativas de inteligencia empresarial, fomentando una toma de decisiones más efectiva y la resiliencia institucional durante crisis. Además, el estudio contribuye al discurso académico más amplio sobre la integración de la inteligencia empresarial en el sector público, subrayando la importancia de un enfoque estratégico para la adopción de tecnología en la educación superior.
Palabras clave:
Inteligencia empresarial,
factores críticos de éxito,
educación superior,
análisis de datos,
transformación organizacional,
gestión del sector público.
Introduction/Objective: this study examines the adoption of Business Intelligence systems in public universities in Bogotá, Colombia, emphasizing their role in improving decision-making processes and institutional adaptability during the COVID-19 pandemic. The primary objective is to identify the critical success factors that underpin the effective implementation of Business Intelligence in higher education institutions.
Methodology: the research adopts a qualitative approach, combining a comprehensive literature review with semi-structured interviews. Participants include academic leaders and information technology professionals from a case study public university in Bogotá. The study analyzes their experiences and perspectives on Business Intelligence systems, classifying the critical success factors into three key dimensions: technology, people, and processes.
Results: the findings highlight several essential success factors for the adoption of Business Intelligence, such as high data quality and content, strategic alignment of Business Intelligence initiatives with institutional objectives, robust governance frameworks, and interoperability of university systems. These factors were benchmarked against existing literature, offering a nuanced understanding of their critical role in the successful implementation of Business Intelligence systems.
Conclusions: this research provides actionable insights for public universities aiming to implement Business Intelligence systems. The critical success factors identified serve as a practical framework for enhancing Business Intelligence initiatives, fostering improved decision-making and institutional resilience during crises. Additionally, the study contributes to the broader academic discourse on Business Intelligence integration in the public sector, underscoring the importance of a strategic approach to technology adoption in higher education.
Keywords:
Business intelligence,
critical success factors,
higher education,
data analytics,
organizational transformation,
public sector management.
JEL Codes:
A11, J16, J22, J24
Ariyachandra, T. R., & Frolick, M. N. (2008). Critical success factors in business performance management – Striving for success. Information Systems Management, 25(2), 113-120. https://doi.org/10.1080/10580530801941504
Atwadkar, S. A., & Patil, U. P. (2025). Business analytics: Prospectivness and opportunities (pp. 467–472). https://doi.org/10.1007/978-981-97-8031-0_49
Azvine, B., Cui, Z., Nauck, D. D., & Majeed, B. (2006). Real time Business Intelligence for the adaptive enterprise. The 8th IEEE International Conference on E-Commerce Technology and The 3rd IEEE International Conference on Enterprise Computing, E-Commerce, and E-Services (CEC/EEE’06), 29-29. https://doi.org/10.1109/CEC-EEE.2006.73
Baars, H., & Kemper, H. G. (2008). Management support with structured and unstructured data – An integrated Business Intelligence framework. Information Systems Management, 25(2), 132-148. https://doi.org/10.1080/10580530801941058
Bakos, J., & Treacy, M. (1986). Information technology and corporate strategy: A research perspective. MIS Quarterly, 107-119.
Becker, J., Knackstedt, R., & Pöppelbuß, J. (2009). Developing maturity models for IT management. Business & Information Systems Engineering, 1(3), 213-222. https://doi.org/10.1007/s12599-009-0044-5
Bhambri, P., & Khang, A. (2024). Challenges and future directions on Business Intelligence (pp. 117-146). https://doi.org/10.4018/979-8-3693-3498-0.ch006
Bichsel, J., & Benefits, R. (2012). Analytics in higher education. https://doi.org/10.13140/RG.2.1.1064.6244
Boulila, W., Al-kmali, M., Farid, M., & Mugahed, H. (2023). A Business Intelligence based solution to support academic affairs: Case of Taibah University. Wireless Networks, 29(3), 1051-1058. https://doi.org/10.1007/s11276-018-1880-3
Brooks, P., El-Gayar, O., & Sarnikar, S. (2015). A framework for developing a domain specific Business Intelligence maturity model: Application to healthcare. International Journal of Information Management, 35(3), 337-345. https://doi.org/10.1016/j.ijinfomgt.2015.01.011
Burton-Jones, & Gallivan. (2007). Toward a deeper understanding of system usage in organizations: A multilevel perspective. MIS Quarterly, 31(4), 657. https://doi.org/10.2307/25148815
Chau, M., & Xu, J. (2012). Special issue: Business Intelligence research business intelligence in blogs: Understanding consumer interactions and communities 1. MIS Quarterly, 36(4), 1189-1216.
Chaudhuri, R., Chatterjee, S., Vrontis, D., & Thrassou, A. (2024). Adoption of robust business analytics for product innovation and organizational performance: The mediating role of organizational data-driven culture. Annals of Operations Research, 339(3), 1757-1791. https://doi.org/10.1007/s10479-021-04407-3
Chaudhuri, S., Dayal, U., & Narasayya, V. (2011). An overview of Business Intelligence technology. Communications of the ACM, 54(8), 88-98. https://doi.org/10.1145/1978542.1978562
Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business Intelligence and analytics: From big data to big impact. MIS Quarterly: Management Information Systems, 36(4), 1165-1188. https://doi.org/10.2307/41703503
Cleland, D. I., & King, W. R. (1975). Competitive Business Intelligence systems. Business Horizons, 18(6), 19-28.
Colmenares Garzón, Y. A., Guina Escobar, E. D., & Cardona-Román, D. M. (2024). Business Intelligence dashboard as a technological innovation for analysis on digital transformation in education. Sustainable Engineering for a Diverse, Equitable, and Inclusive Future at the Service of Education, Research, and Industry for a Society 5.0. https://doi.org/10.18687/LACCEI2024.1.1.1725
Davenport, T. H. (2006). Competing on analytics. Harvard Business Review, 84(1), 98–107. www.hbr.orgorcall800-988-0886.www.hbr.org
Delone, W., & McLean, E. (2003). The DeLone and McLean model of Information systems success: A ten-year update. Journal of Management Information Systems, 19(4), 9-30. https://doi.org/10.1080/07421222.2003.11045748
Drake, B. M., & Walz, A. (2018). Evolving Business Intelligence and data analytics in higher education. New Directions for Institutional Research, 2018(178), 39–52. https://doi.org/10.1002/ir.20266
Eckerson, W. (2004). Best practices in business performance management: Business and technical strategies. www.dw-institute.com
El-Adaileh, N. A., & Foster, S. (2019). Successful Business Intelligence implementation: A systematic literature review. Journal of Work-Applied Management, 11(2), 121-132. https://doi.org/10.1108/JWAM-09-2019-0027
Elbashir, M. Z., Collier, P. A., & Davern, M. J. (2008). Measuring the effects of business intelligence systems: The relationship between business process and organizational performance. International Journal of Accounting Information Systems, 9(3), 135-153. https://doi.org/10.1016/j.accinf.2008.03.001
El-khalili, N., Abu Arqoub, M., Hasan, M. A., Banna, A. A., & Arafah, M. (2024). Empowering learning analytics with business intelligence. 2024 2nd International Conference on Cyber Resilience (ICCR), 1-6. https://doi.org/10.1109/ICCR61006.2024.10533111
Gangadharan, G. R., & Swami, S. N. (2004). Business intelligence systems: Design and implementation strategies. 26th International Conference on Information Technology Interfaces.
Gasbarri, P., Accardo, D., Cacciaguerra, E., Meschini, S., & Tagliabue, L. C. (2024). Supporting asset management with GIS and business intelligence technologies: The case study of the University of Turin. ISPRS International Journal of Geo-Information, 13(3), 65. https://doi.org/10.3390/ijgi13030065
Geiger, J. (2009). How to start a business intelligence program. Information Management, 19(6).
Ghosbal, S., & Kim, S. K. (1986). Building effective intelligence systems for competitive advantage. Sloan Management Review, 27, 49-58.
Gilad, B., & Gilad, T. (1985). A system approach to Business Intelligence. Business Horizons, 28(6), 65-70.
Golfarelli, M., Rizzi, S., & Cella, I. (2004). Beyond data warehousing. Proceedings of the 7th ACM International Workshop on Data Warehousing and OLAP, 1-6. https://doi.org/10.1145/1031763.1031765
Gupta, R., & Awasthy, R. (2015). Qualitative research in management: Methods and experiences. (R. Gupta & R. Awasthy, Eds.). Sage.
Hanandeh, A., Qudah, M. A. Al, Mansour, A., Al-Qudah, S., Abualfalayeh, G., Kilani, Q., & Khasawneh, M. A. S. (2024). The achievement of digital leadership sustainability and business performance through the implementation of business intelligence, artificial intelligence, and quality learning in private universities in Jordan. Uncertain Supply Chain Management, 12(4), 2581-2586. https://doi.org/10.5267/j.uscm.2024.5.012
Hartley, M. K., & Seymour, L. F. (2015). Key success factors for implementing Business Intelligence in South African public sector organisations. Proceedings of the 9th IDIA conference, IDIA2015.
Haryono, K., & Mansur, A. (2024). Systematic literature mapping: Finding potential novelty for Business Intelligence in higher education institution. 2024 6th International Conference on Management Science and Industrial Engineering, 267–272. https://doi.org/10.1145/3664968.3665004
Hawking, P., & Sellitto, C. (2010). Business Intelligence (BI) critical success factors (Vol. 4). http://aisel.aisnet.org/acis2010/4
- Magaireah, A., HidayahSulaiman, H., & Ali, N. (2019). Identifying the most critical factors to Business Intelligence implementation success in the public sector organizations. The Journal of Social Sciences Research, 52, 450-462. https://doi.org/10.32861/jssr.52.450.462
Işik, Ö., Jones, M. C., & Sidorova, A. (2013). Business Intelligence success: The roles of BI capabilities and decision environments. Information and Management, 50(1), 13-23. https://doi.org/10.1016/j.im.2012.12.001
Jamiu, S. M., Abdullah, N. S., Miskon, S., & Ali, N. M. (2020). Data governance support for Business Intelligence in higher education: A systematic literature review (pp. 35-44). https://doi.org/10.1007/978-3-030-33582-3_4
Jourdan, Z., Rainer, R. K., & Marshall, T. E. (2008). Business Intelligence: An analysis of the literature. Information Systems Management, 25(2), 121-131. https://doi.org/10.1080/10580530801941512
Kelemen, M. L., & Rumens, N. (2008). An introduction to critical management research. Sage.
Khaleefeh M., Muflih, Y. T., & T. Jawarneh. (2011). An examination of ICT skills possession and adoption amongst faculty members at Jordan University of Science and Technology (JUST) in relation to Rogers’ diffusion of innovation model background for the study. International Journal for Research in Education, 30, 29-59.
Kohavi, R., Rothleder, N. J., & Simoudis, E. (2002). Emerging trends in business analytics. Communications of the ACM, 45(8), 45-48.
Larson, D., & Chang, V. (2016). A review and future direction of agile, Business Intelligence, analytics and data science. International Journal of Information Management, 36(5), 700-710. https://doi.org/10.1016/j.ijinfomgt.2016.04.013
Larson, S. (2010). Information systems and strategic decisions: A literature review. SAIS 2009 Proceedings.
Leavy, P. (2014). The Oxford Handbook of Qualitative Research. Oxford University Press.
Leavy, P. (2017). Research design: Quantitative, qualitative, mixed methods, arts-based, and community-based participatory research approaches. The Guilford Press.
Lönnqvist, A., & Pirttimäki, V. (2006). The measurement of Business Intelligence. Information Systems Management, 23(1), 32-40. https://doi.org/10.1201/1078.10580530/45769.23.1.20061201/91770.4
Lönnqvist, A., & Puhakka, V. (2009). The measurement of Business Intelligence. EDPACS, 40(3), 1-14. https://doi.org/10.1080/07366980903446611
Loshin, D. (2013). Business Intelligence: The Savvy Manager’s Guide (1st edition). Morgan Kaufmann.
Maaitah, T. (2023). The role of Business Intelligence tools in the decision making process and performance. Journal of Intelligence Studies in Business, 13(1), 43–52. https://doi.org/10.37380/jisib.v13i1.990
Matar, N., Al-Jaber, A., & Matar, W. (2024). Unlocking Business Intelligence and data analytics adoption patterns: Insights from Jordanian higher education Institutions. Engineering, Technology & Applied Science Research, 14(5), 16198–16206. https://doi.org/10.48084/etasr.8013
Medeiros, M. M. de, Hoppen, N., & Maçada, A. C. G. (2020). Data science for business: Benefits, challenges and opportunities. The Bottom Line, 33(2), 149-163. https://doi.org/10.1108/BL-12-2019-0132
Mikalef, P., Pappas, I. O., Krogstie, J., & Pavlou, P. A. (2020). Big data and business analytics: A research agenda for realizing business value. In Information and Management (Vol. 57, Issue 1). Elsevier B.V. https://doi.org/10.1016/j.im.2019.103237
Munawar, G., Arsyad, Z., & Hodijah, A. (2024). The development of Business Intelligence dashboard to measure the KPI of the study program (Case study: LAM Infokom instrument). 120004. https://doi.org/10.1063/5.0211908
Murti, G. T., & Mulyani, S. (2022). The determinant of Business Intelligence systems quality on Indonesian higher education information center. Linguistics and Culture Review, 6, 581-595. https://doi.org/10.21744/lingcure.v6nS1.2104
Myers, M. (1997). Qualitative research in information systems. MISQ Discovery, 1-19.
Pawar, B. S., & Sharda, R. (1997). Obtaining Business Intelligence on the Internet. Long Range Planning, 30(1), 110-121. https://doi.org/10.1016/S0024-6301(96)00100-8
Popovič, A., Hackney, R., Coelho, P. S., & Jaklič, J. (2012). Towards Business Intelligence systems success: Effects of maturity and culture on analytical decision making. Decision Support Systems, 54(1), 729-739. https://doi.org/10.1016/j.dss.2012.08.017
Power, D. J. (2007). A brief history of decision support systems (pp. 1-10). http://DSSResources.COM/history/dsshistory.html
Power, D. J., Heavin, C., McDermott, J., & Daly, M. (2018). Defining business analytics: An empirical approach. Journal of Business Analytics, 1(1), 40-53. https://doi.org/10.1080/2573234X.2018.1507605
Prayogo, S., Hidayanto, M. B., & Lubis, M. (2023). Business Intelligence in e-learning for Higher Education. Proceedings of the 2023 11th International Conference on Computer and Communications Management, 215–220. https://doi.org/10.1145/3617733.3617768
Rajterič, I. H. (2010). Overview of Business Intelligence maturity models. Management, 15(1), 47-67. https://hrcak.srce.hr/file/81745
Reale, F. (2021). Mission-oriented innovation policy and the challenge of urgency: Lessons from Covid-19 and beyond. Technovation, 107, 102306. https://doi.org/10.1016/j.technovation.2021.102306
Sahay, B. S., & Ranjan, J. (2008). Real time Business Intelligence in supply chain analytics. Information Management and Computer Security, 16(1), 28-48. https://doi.org/10.1108/09685220810862733
Saunder, M. N. K., Lewis, P., & Thornhill, A. (2019). Research methods for business students (8th Edition). Pearson.
Sequeira, R., Reis, A., Alves, P., & Branco, F. (2024). Roadmap for implementing Business Intelligence systems in higher education institutions: Systematic literature review. Information, 15(4), 208. https://doi.org/10.3390/info15040208
Shamim, S., Zeng, J., Shariq, S. M., & Khan, Z. (2019). Role of big data management in enhancing big data decision-making capability and quality among Chinese firms: A dynamic capabilities view. Information & Management, 56(6), 103135. https://doi.org/10.1016/j.im.2018.12.003
Sharma, R., Mithas, S., & Kankanhalli, A. (2014). Transforming decision-making processes: A research agenda for understanding the impact of business analytics on organisations. In European Journal of Information Systems (Vol. 23, Issue 4, pp. 433-441). Palgrave Macmillan Ltd. https://doi.org/10.1057/ejis.2014.17
Siegel, C. F. (2000). Introducing marketing students to Business Intelligence using project-based learning on the world wide web. Journal of Marketing Education, 22(2), 90-98.
Simons, H. (2009). Case study research in practice. Sage.
Simons, H. (2014). Case study research: In-Depth understanding in contex. In P. Leavy (Ed.), The Oxford Handbook of Qualitative Research (pp. 1-756). Oxford University Press.
Sorour, A., & Atkins, A. S. (2024). Integrating Artificial Intelligence Transformers With Business Intelligence Systems for Monitoring Learning Outcomes in Higher Education Institutions (pp. 36-54). https://doi.org/10.4018/979-8-3693-1198-1.ch003
Sorour, A., Atkins, A. S., Stanier, C. F., & Alharbi, F. D. (2020). The role of Business Intelligence and analytics in higher education quality: A proposed architecture. . International Conference on Advances in the Emerging Computing Technologies (AECT). Al Madinah Al Munawwarah, Saudi Arabia. https://doi.org/10.1109/AECT47998.2020.9194157
Trkman, P., McCormack, K., De Oliveira, M. P. V., & Ladeira, M. B. (2010). The impact of business analytics on supply chain performance. Decision Support Systems, 49(3), 318-327. https://doi.org/10.1016/j.dss.2010.03.007
Vercellis, Carlo. (2008). Business Intelligence: Data mining and optimization for decision making. Wiley.
Vidgen, R., Shaw, S., & Grant, D. B. (2017). Management challenges in creating value from business analytics. European Journal of Operational Research, 261(2), 626–639. https://doi.org/10.1016/j.ejor.2017.02.023
Watson, H. J., Abraham, D. L., Chen, D. Q., Preston, D. S., & Thomas, D. (2004). Data warehousing ROI: Justifying and assessing a data warehouse. Business Intelligence Journal, 6-17.
Watson, H., & Wixom, B. (2007). The current state of Business Intelligence. Computer, 40(9), 96-99. https://doi.org/10.1109/MC.2007.331
Weber, K., DaSilva, A. F., Dault, J. T., Eber, R., Huner, K., Jones, D., Kornman, K., Ramaswamy, V., Snyder, M., Ward, B. B., & Nalliah, R. P. (2021). Using Business Intelligence and data visualization to understand the characteristics of failed appointments in dental school clinics. Journal of Dental Education, 85(4), 521–530. https://doi.org/10.1002/jdd.12538
Williams, C. (2007). Research methods. Journal of Business & Economic Research, 5, 65-72.
Williams, S., & Williams, N. (2004). Assessing BI Readiness: The key to BI ROI. Business Intelligence Journal, 9(3), 1-11.
Wixom, B., & Watson, H. (2010). The BI-Based organization. International Journal of Business Intelligence Research, 1(1), 13-28. https://doi.org/10.4018/jbir.2010071702
Yahaya, J., Hani, N., Deraman, A., & Yah, Y. (2019). The implementation of Business Intelligence and analytics integration for organizational performance management: A case study in public sector. International Journal of Advanced Computer Science and Applications, 10(11). https://doi.org/10.14569/IJACSA.2019.0101140
Yeoh, W., & Koronios, A. (2010). Critical success factors for Business Intelligence systems. Journal of computer information systems (Vol. 50, Issue 3). http://hdl.handle.net/10536/DRO/DU:30033043
Yin, R. (2013). Case study research: Design and methods (3rd Ed., Vol. 5). Sage.
Instituciones
Universidad Nacional de Colombia, Colombia
Copyright © 2025. Fundación Universitaria Konrad Lorenz, Colombia