Management control for quality in a hospitality business using ARP curves and the multivariate geometric indicator
Control de gestión para la calidad en una empresa hotelera con curvas ARP y el indicador geométrico multivariante
Tomás José Fontalvo Herrera
,
Juan José Tous Ferrigno
,
Fabio Mejía Zambrano
Suma de Negocios, 16(34), 55-67, enero-junio 2025, ISSN 2215-910X
https://doi.org/10.14349/sumneg/2025.V16.N34.A6
Received: September 17, 2024
Accepted: December 13, 2024
Online: January 29, 2025
Introducción / Objetivo: este estudio tiene como objetivo evaluar la calidad del servicio en una empresa hotelera que opera con tres líneas de atención: preferencial, estándar y básica, bajo condiciones cambiantes. Para ello, se implementaron las curvas de operación basadas en métricas Six Sigma y el indicador geométrico de capacidad multivariante. El marco teórico desarrollado incluye conceptos sobre control de gestión, calidad en los servicios, métricas Six Sigma, curvas de operación de rendimiento promedio de corrida (ARP) e indicadores geométricos de capacidad.
Metodología: se utilizó un enfoque cuantitativo racional y un análisis de sensibilidad, ajustando el nivel de desempeño Sigma Z entre 3 y 6. Se propusieron las curvas de operación de rendimiento promedio de corrida (ARP) y el indicador geométrico de capacidad como herramientas principales para el análisis.
Resultados: el análisis demostró que las líneas de servicio preferencial y estándar presentaron los mejores niveles de desempeño, todos superiores a un nivel Sigma Z de 5. Además, se identificó el número de unidades necesarias para progresar de un nivel de desempeño inicial (Z1) a un nivel objetivo (Z2). Finalmente, el servicio general fue calificado como excelente mediante la aplicación del indicador geométrico multivariante.
Conclusiones: se desarrolló un método innovador basado en las curvas de operación de rendimiento promedio de corrida (ARP) y los indicadores geométricos de capacidad, fundamentados en métricas Six Sigma. Este método permite establecer criterios de control para monitorear las condiciones operativas del servicio, facilitando la toma de decisiones orientadas a mejorar el desempeño de la calidad.
Palabras clave:
Servicio hotelero,
gestión,
curvas de operación,
rendimiento promedio de corrida,
métricas Six Sigma,
indicador geométrico multivariante.
Códigos JEL:
L8, L15, C13, C65
Introduction / Objective: this study aims to assess the quality of service in a hospitality business with three service lines: premium, standard, and basic, operating under variable conditions. The analysis incorporates operational curves based on Six Sigma metrics and the multivariate geometric capacity indicator. The theoretical framework covers key concepts, including management control, service quality, Six Sigma metrics, average run length performance (ARP) curves, and geometric capacity indicators.
Methodology: the study adopts a rational quantitative approach combined with a sensitivity analysis that adjusts the Sigma performance level (Z) from 3 to 6. It introduces ARP operational curves and the multivariate geometric capacity indicator as tools to evaluate and optimize performance.
Results: the premium and standard service lines achieved the highest Sigma Z levels, consistently exceeding 5. The analysis identified the required production units in each process to transition from an initial performance level (Z1) to a target level (Z2). Furthermore, the multivariate geometric indicator classified the overall service as excellent.
Conclusions: the study presents an innovative method grounded in ARP operational curves and multivariate geometric capacity indicators, aligned with Six Sigma metrics. This approach establishes robust control criteria to monitor operational conditions effectively, supporting decision-making processes aimed at enhancing service quality performance.
Keywords:
Hospitality service,
management,
operational curves,
average run performance,
Six Sigma metrics,
multivariate geometric indicator.
Adel, R. (2022). Smart services’ quality scale. International Journal of Productivity and Quality Management, 35(4), 429-446. https://doi.org/10.1504/IJPQM.2022.122758
Alblooshi, T., Azli, M., Hilmi, M. F., Abudaqa, A., & Ahmed, G. (2023). Examining the trends in citizen satisfaction towards e-government services in United Arab Emirates: a structural equation modelling approach. International Journal of Services, Economics and Management, 14(1), 58-77. https://doi.org/10.1504/EIJSEM.2023.129597
Badiru, A. (2022). Quality insight: Quality integration using engineering systems methodology. International journal of quality engineering and technology, 8(4), 325-334. https://doi.org/10.1504/IJQET.2022.123500
Bagherian, A., Gershon, M., & Swarnakar, V. (2022). Role of employee training on Six Sigma implementation’s success: an empirical study. International Journal of Six Sigma and Competitive Advantage, 14(2), 247-278. https://doi.org/10.1504/IJSSCA.2021.10043575
Bagherian, A., Gerschon, M., & Kumar, S. (2024a). Enhancing the journey to six sigma excellence: Identifying critical success factors. International Journal of Productivity and Performance Management. https://doi.org/10.1108/IJPPM-08-2023-0446
Bagherian, A., Gershon, M., & Kumar, S. (2024b). Unraveling the key determinants of successful six sigma implementation: An empirical investigation. Total Quality Management and Business Excellence, 35(1-2), 114-136. https://doi.org/10.1080/14783363.2023.2275213
Bhat, S., Antony, J., Maalouf, M., E.V, G., & Salah, S. (2023). Applications of six sigma for service quality enhancement in the UAE: A multiple case study analysis and lessons learned. International Journal of Lean Six Sigma, 14(7), 1492-1517. https://doi.org/10.1108/IJLSS-06-2022-0144
Bakhshandeh, G., Sharifi, S., & Rezaei, S. M. (2023). Influence of personalisation and hedonic motivation on repurchase intention: the mediating role of customer experience and loyalty. International Journal of Services, Economics and Management, 14(1), 42-57. https://doi.org/10.1504/EIJSEM.2023.129595
Cheng, K. M., Hsu, C. H., & Huang, C. H. (2012). A Study on the application of 6-Sigma on the enhancement of service quality of fitness club. Quality & Quantity, 46(2), 705-713. https://doi.org/10.1007/s11135-010-9424-7
Čirjevskis, A. (2023). Measuring dynamic capabilities-based synergies using real options in M&A deals: Amazon’s acquisition of Whole Foods. International Journal of Applied Management Science, 15(1), 73-85. https://doi.org/10.1504/IJAMS.2023.128296
Delahoz-Domínguez, E., Mendoza-Mendoza, A., & Zuluaga-Ortiz, R. (2024). A Six Sigma and DEA framework for quality assessment in banking services. Administrative Sciences, 14(11), 1-12. https://doi.org/10.3390/admsci14110295
Einhorn, S., Fietz, B., Guenther, T. W., & Guenther, E. (2024). The relationship of organizational culture with management control systems and environmental management control systems. Review of Managerial Science, 18, 23212-2371. https://doi.org/10.1007/s11846-023-00687-0.
Escobar, C. A., Macias, D., McGovern, M., Hernandez-de-Menendez, M., & Morales-Menendez, R (2024). Quality 4.0 – an evolution of Six Sigma DMAIC. International Journal of Lean Six Sigma, 1-15, https://doi.org/10.1108/IJLSS-05-2021-0091
Fontalvo Herrera, T. J., & Banquez Maturana, A. G. (2023). Comparative analysis of multivariate capacity indicators for serial and parallel systems. International Journal of Six Sigma and Competitive Advantage, 14(4), 468-489. https://doi.org/10.1504/IJSSCA.2023.134454
Fontalvo Herrera, T. J., Banquez Maturana, A. G., & Mendoza Villero, K. (2024a). Performance of a concurrent parallel production system through new operating curves of Six Sigma metrics. Production, 34, e20230040. https://doi.org/10.1590/0103-6513.20230040
Fontalvo Herrera, T., Mejia Zambrano, F., & Oyuela Rodríguez, G. (2024b). Evaluación con curvas de operación de métricas Seis Sigma el desempeño de sistemas productivos mixtos. Investigación E Innovación En Ingenierías, 12(1), 1–12. https://doi.org/10.17081/invinno.12.1.6680
Fontalvo, T., Herrera, R., & Banquez, A. (2024c). Performance evaluation method of the service quality dimensions using Six Sigma metrics, the main components’ quality indicator and the geometric capacity indicator. Engineering Management in Production and Services, 16(1), 65-76. 10.2478/emj-2024-0005.
Fontalvo, T. J., Benavides, K. G., & Coronell, L. H. (in print). Comparing the performance of serial and parallel production systems through Six Sigma metrics.
Garg, C. P., & Agrawal, V. (2023). Evaluation of key performance indicators of Indian airlines using fuzzy AHP method. International Journal of Business Performance Management, 24(1), 1-21. https://doi.org/10.1504/IJBPM.2023.127509
Gonzalez Santacruz, E., Romero, D., Noguez, J., & Wuest, T. (2024). Integrated quality 4.0 framework for quality improvement based on Six Sigma and machine learning techniques towards zero-defect manufacturing. TQM Journal, Ml. https://doi.org/10.1108/TQM-11-2023-0361
Gupta, N. (2023). Optimising data quality of a data warehouse using data purgation process. International Journal of Data Mining, Modelling and Management, 15(1), 102-131. https://doi.org/10.1504/IJDMMM.2023.129961
Gupta, M., Digalwar, A., Gupta, A., & Goyal, A. (2024). Integrating Theory of Constraints, Lean and Six Sigma: A framework development and its application. Production Planning and Control, 35(3), 238-261. https://doi.org/10.1080/09537287.2022.2071351
Hariyani, D., Hariyani, P., Mishra, S., & Kumar Sharma, M. (2024). Stakeholders’ perspectives and performance outcomes of sustainable market-focused manufacturing system in Indian manufacturing organizations. Cleaner Logistics and Supply Chain, 13(May), 100178. https://doi.org/10.1016/j.clscn.2024.100178
Herrera Acosta, R., Hernández Alvear, K., Figueroa Gélvez, E., & De La Ossa De Ávila, J. (2018). Aplicación del control estadístico multivariado para medir la capacidad del proceso de fabricación de resortes de compresión en acero inoxidable. Prospectiva, 16(2), 49-58. http://dx.doi.org/10.15665/rp.v16i2.1495
Herrera, T. J. F., & Maturana, A. G. B. (2023). Comparative analysis of multivariate capacity indicators for serial and parallel systems. International Journal of Six Sigma and Competitive Advantage, 14(4), 468-489. https://doi.org/10.1504/IJSSCA.2023.134454
Herrera, T. J. F., Acosta, R. H., & Maturana, A. G. B. (2024). Performance evaluation method of the service quality dimensions using Six Sigma metrics, the main components’ quality indicator and the geometric capacity indicator. Engineering Management, 16(1). https://doi.org/10.2478/emj-2024-0005
Hu, Z., Wang, R. S., Qin, X., Huang, Y. N., Chiu, H. C., Liu, Y., & Wang, B. L. (2024). The global research landscape and future trends in healthcare Total Quality Management. Archives of Public Health, 82(1). https://doi.org/10.1186/s13690-024-01420-3
Kapur, B., Vij, P., Singh, N., Douglas, A., & Pepper, M. (2024). How research contributions of professor Jiju Antony have influenced the field of quality management: an appraisal and critique. TQM Journal. https://doi.org/10.1108/TQM-01-2024-0036
Kenge, R., & Khan, Z. (2021). A case study on the DMAIC Six Sigma application to prevent injuries in the manufacturing industry. International Journal of Six Sigma and Competitive Advantage, 13(4), 477-493. https://doi.org/10.1504/IJSSCA.2021.120584
Kim, J. S. (2021). To what extent does a knowledge-intensive business service firm need customer knowledge integrative activities? The case of DigiCAP. International Journal of Services Technology and Management, 27(1-2), 1-22. https://doi.org/10.1504/IJSTM.2021.113572
Kim, C., Costello, F. J., Lee, J., & Lee, K. C. (2024). Connecting individual-level creativity to strategic management processes. Management Decision. https://doi.org/10.1108/MD-02-2023-0158
Lee, J., Kim, S. B., Kim, Y., & Kim, S. (2023). Predictive analytics for efficient decision making in personnel selection. International Journal of Management and Decision Making, 22(1), 106-122. https://doi.org/10.1504/IJMDM.2023.127688
Marchiori, C., & Minelli, E. (2023). Talent, basic research and growth. Journal of Economic Theory, 213, 105721. https://doi.org/10.1016/j.jet.2023.105721
Madhani, P. M. (2022). Lean Six Sigma deployment in HR: Enhancing business performance. International Journal of Human Resources Development and Management, 22(1-2), 75-97. https://doi.org/10.1504/IJHRDM.2022.121314
Na-Nan, K., Phanniphong, K., Niangchaem, L., & Ouppara, N. (2024). Validation of an organizational sustainable development questionnaire: Exploring dimensions and implications. Sustainable Futures, 7(May), 100221. https://doi.org/10.1016/j.sftr.2024.100221
Nayak, K., Singhal, D., Tripathy, S., & Mohapatra, B. (2023). Evaluation of key enablers of green supply chain management in Indian manufacturing industries: a fuzzy approach. International Journal of Services and Operations Management, 44(1), 62-92. https://doi.org/10.1504/IJSOM.2023.128946
Pacagnella Junior, A. C., Vallati, S. F., & Arruda Ignacio, P. S. de. (2024). Efficiency analysis of Lean Six Sigma projects: insights for selection and prioritisation. Total Quality Management and Business Excellence, 35(1–2), 1–31. https://doi.org/10.1080/14783363.2023.2201426
Pei, Y., Wang, S., & Archer, N. (2021). Reputation, familiarity and use intention for e-payment services: A comparison of pure-play and click-and-mortar e-payment services. International Journal of Services Technology and Management, 27(1-2), 72-103. https://doi.org/10.1504/IJSTM.2021.113575
Pratik, M., & Yashoda, D. (2024). Investigating the relationship between Lean Six Sigma performance strategy with digital twin modeling: Practices and factors. Journal of Cleaner Production, 436, 140449. https://doi.org/10.1016/j.jclepro.2023.140449
Qin, T., Li, C., Sun, S., & Liu, G. (2024). A device information-centered accelerator control network management system. Radiation Detection Technology and Methods, 8, 1342-1358. https://doi.org/10.1007/s41605-024-00459-8
Qayyum, S., Ullah, F., Al-Turjman, F., & Mojtahedi, M. (2021). Managing smart cities through six Sigma DMADICV method: A review-based conceptual framework. Sustainable Cities and Society, 72, 103022. https://doi.org/10.1016/j.scs.2021.103022
Sabani, E., Loualid, E. M., Fakir, K., El Hadraoui, H., Ennawaoui, C., & Azim, A. (2024). Statistical control charts for proactive bearings fault diagnosis in turbines: Advancing predictive maintenance in renewable energy systems. Journal of Vibration Engineering and Technologies, 12(s1), 515-529. https://doi.org/10.1007/s42417-024-01430-z
Saghih, A. M. F., & Bidokhti, B. S. (2023). Requirements analysis of customer service recovery system in hospitality industry using fuzzy DEMATEL and ANP. International Journal of Services, Economics and Management, 14(1), 108-132. https://doi.org/10.1504/EIJSEM.2023.129596
Shaik, S., Sampson, S. M., & Franchetti, M. J. (2021). Evaluating reliability of diesel generator peakers using Six Sigma methodologies. International Journal of Six Sigma and Competitive Advantage, 13(4), 456-476. https://doi.org/10.1504/IJSSCA.2021.120587
Silva, H. M. M., Vanalle, R. M., Lucato, W. C., & Calarge, F. A. (2023). Relevance of barriers for Six Sigma implementation in industrial organizations. Latin American Business Review, 24(3), 207-241. https://doi.org/10.1080/10978526.2023.2222080
Sim, C. L., Chuah, F., Sin, K. Y., & Lim, Y. J. (2024). The moderating role of Lean Six Sigma practices on quality management practices and quality performance in medical device manufacturing industry. TQM Journal, 36(5), 1273-1299. https://doi.org/10.1108/TQM-11-2021-0342
Sonhaji, A. I., Anityasari, M., & ER, M. (2024). IT-based Lean Six Sigma implementation in civil registration: Lesson learned from an Indonesian context. Cogent Business and Management, 11(1). https://doi.org/10.1080/23311975.2024.2396047
Trakulsunti, Y., Antony, J., Garza-Reyes, J. A., Tortorella, G. L., Chuayjan, W., & Foster, M. (2024). An exploration of operational excellence methodologies implementation in the logistics sectors: A global study. TQM Journal. https://doi.org/10.1108/TQM-10-2023-0313
Valencia, A. M. S. (2021). Social, economic and environmental factors and the relationship with the knowledge and skills of entrepreneurs (KSE) and companies internal factors (CIF). Findings in collective enterprises in crisis situations in a country. International Journal of Services Operations and Informatics, 11(1), 41-53. https://doi.org/10.1504/EIJSOI.2021.114114
Wittenberger, G., & Teplická, K. (2024). The synergy model of quality tools and methods and its influence on process performance and improvement. Applied Sciences (Switzerland), 14(12). https://doi.org/10.3390/app14125079
Wings, S., & Harkonen, J. (2023). Decentralised or centralised management of data and products: influence on revenue-generating processes. International Journal of Management and Decision Making, 22(1), 74-105. https://doi.org/10.1504/IJMDM.2023.127687
Yacoub, L. B., & Harb, A. H. (2023). A strategic assessment and evaluation of the major factors behind the high failure rate of many restaurants in the city of Beirut-Lebanon. International Journal of Services and Operations Management, 44(1), 43-61. https://doi.org/10.1504/IJSOM.2023.128942
Zacharia, A., & Ravichandran, J. (2022). Six Sigma-based RS, MDSS and MDSRS control charts. International Journal of Six Sigma and Competitive Advantage, 13(4), 435-455. https://doi.org/10.1504/IJSSCA.2021.120576
Zhang, Q., Abdullah, A-R., Chong, C-W. & Ali, M-H. (2023). Analysis on the production technology innovation and management path of industrial enterprises under the trend of Industry 4.0, Int. J. Technology Management, 91(1/2), 53-67. https://doi.org/10.1504/IJTM.2023.127857
Dimensions
PlumX
Instituciones
Universidad de Cartagena, Cartagena, Colombia
Universidad del Tolima, Ibagué, Colombia
Copyright © 2025. Fundación Universitaria Konrad Lorenz, Colombia