Medición de la compensación del riesgo en el mercado de criptomonedas

Measuring risk compensation in the cryptocurrency market

Andrés Caicedo Carrero , Jorge Alexander Cortés Cortés , Wilmar Arnulfo Bravo Murillo , Myriam Aydee Moreno Garzón

Suma de Negocios, 16(34), 21-31, enero-junio 2025, ISSN 2215-910X

https://doi.org/10.14349/sumneg/2025.V16.N34.A3

Recibido: 5 de marzo de 2024
Aceptado: 17 de septiembre de 2024
Online: 15 de enero de 2025

Resumen

Introducción/objetivo: este estudio analiza el rendimiento ajustado al riesgo de las criptomonedas más populares en comparación con el índice S&P 500, utilizando el Alpha de Jensen para evaluar si estas superan el rendimiento ajustado por riesgo en el periodo 2019-2023.

Objetivo: examinar el rendimiento ajustado al riesgo de Bitcoin, Ethereum, Tether y Binance frente al S&P 500, determinando su capacidad para superar el mercado mediante el Alpha de Jensen.

Metodología: se empleó un enfoque cuantitativo descriptivo, calculando rendimientos logarítmicos diarios, estimando el beta de las criptomonedas, aplicando el modelo CAPM para rentabilidades ajustadas por riesgo y utilizando el Alpha de Jensen para evaluar la compensación del riesgo.

Resultados: las criptomonedas presentaron mayor volatilidad y rendimientos extremos en comparación con el S&P 500, mostrando diferencias significativas en su capacidad para compensar el riesgo.

Conclusiones: a pesar de su alta volatilidad, Ethereum y Binance lograron compensar el riesgo de manera adecuada, mientras que Bitcoin evidenció una capacidad menos consistente y Tether no logró compensarlo. Estos resultados subrayan la importancia de estrategias de inversión adaptativas en el dinámico mercado de criptomonedas.


Palabras clave:
Criptomonedas,
Alpha de Jensen,
Capital Assets Price Model,
riesgo sistemático,
inversión,
volatilidad.

Códigos JEL:
G11, G12, G29, O39

Abstract

Introduction: this study analyzed the risk-adjusted performance of the most popular cryptocurrencies compared to the S&P 500 index, using Jensen’s Alpha to determine whether these assets outperformed on a risk-adjusted basis during the 2019–2023 period.

Objective: the research aimed to evaluate the risk-adjusted performance of Bitcoin, Ethereum, Tether, and Binance relative to the S&P 500, assessing their ability to outperform the market using Jensen’s Alpha.

Methodology: the study employed a quantitative descriptive approach by calculating daily logarithmic returns, estimating the Beta of cryptocurrencies, applying the CAPM model for risk-adjusted returns, and utilizing Jensen’s Alpha to measure risk compensation.

Results: the findings revealed that cryptocurrencies exhibited higher volatility and extreme returns compared to the S&P 500, with significant differences in their ability to compensate for risk.

Conclusions: despite their high volatility, Ethereum and Binance successfully compensated for risk, while Bitcoin displayed less consistent performance, and Tether failed to provide adequate risk compensation. These findings underscore the importance of adaptive investment strategies in the dynamic cryptocurrency market.


Keywords:
Cryptocurrencies,
Jensen’s Alpha,
Capital Asset Pricing Model,
systematic risk,
investment, volatility.

Artículo Completo
Bibliografía

Auke, P. (2007). Performance measurement and evaluation. Munich Personal RePEc Archive, 1-43. https://mpra.ub.uni-muenchen.de/5048/1/MPRA_paper_5048.pdf

Bains, P., Ismail, A., Melo, F., & Sugimoto, N. (2022). Regulating the crypto ecosystem: The case of unbacked crypto assets. International Monetary Fund Fintech Note, 1-47. https://www.imf.org/-/media/Files/Publications/FTN063/2022/English/FTNEA2022007.ashx

Bank for International Settlements. (2023). The crypto ecosystem: Key elements and risks. https://www.bis.org/publ/othp72.pdf

Berentsen, A., & Schär, F. (2018). A short introduction to the world of cryptocurrencies. Federal Reserve Bank of St. Louis Review, 1-16. https://www.researchgate.net/publication/322456542_A_Short_Introduction_to_the_World_of_Cryptocurrencies

Brini, A., & Lenz, J. (2024). A comparison of cryptocurrency volatility-benchmarking new and mature asset classes. Financial Innovation, 1-38. https://doi.org/10.1186/s40854-024-00646-y

Chen, Y., She, C., Wu, Q., & Wang, H. (2022). The ineffectiveness of capital asset pricing model and its possible solutions. Advances in Economics, Business and Management Research, 211, 105-110. https://www.atlantis-press.com/article/125971645.pdf

Cloots, A. S. (2018). Cryptocurrencies, blockchain and risk management: Legal, operational and systemic risk. Judge Business School, 1-10. https://www.jbs.cam.ac.uk/wp-content/uploads/2020/08/riskprize2018-cloots.pdf

CoinMarketCap. (2024, enero 28). CoinMarketCap. https://coinmarketcap.com/

Czekierda, B. (2007). The capital asset pricing model: Test of the model on the Warsaw Stock Exchange. Institutionen för Ekonomi, Statistik och Informatik, 1-57. https://www.diva-portal.org/smash/get/diva2:139114/fulltext01.pdf

Dasman, S. (2021). Analysis of return and risk of cryptocurrency Bitcoin asset as investment instrument. In Alsharari, N. M., 21st century approaches to management and accounting research (pp. 1-14). IntechOpen. https://ideas.repec.org/h/ito/pchaps/233754.html#:~:text=The%20results%20showed%20that%20the,standard%20deviation%20less%20than%205%25

Doncel, L. M., Sainz, J., Grau, P., & Otamendi, J. (2008). An evaluation on the true statistical relevance of Jensen’s Alpha trough simulation: An application for Germany. Economics Bulletin, 7(10), 1-9. https://www.researchgate.net/publication/4831902_An_evaluation_on_the_true_statistical_relevance_of_Jensen’s_alpha_trough_simulation_An_application_for_Germany

Du, T. M. (2015). A different approach to Jensen relationship with returning ranking. Undergraduate Economic Review, 11(1), 1-16, Article 16. https://core.ac.uk/download/pdf/59232184.pdf

Elbannan, M. A. (2015). The capital asset pricing model: An overview of the theory. International Journal of Economics and Finance, 7(1), 216-228. https://www.researchgate.net/publication/270574575_The_Capital_Asset_Pricing_Model_An_Overview_of_the_Theory

Fahmi, S., Geetha, C., & Mohidin, R. (2017). The effect of systematic risk factors on the performance of the Malaysia stock market. Proceedings of International Conference on Economics, 57-68. https://www.ums.edu.my/fpep/files/Shameer.pdf

Fama, E. F., & French, K. R. (2004). The capital asset pricing model: Theory and evidence. Journal of Economic Perspectives, 18(3), 24-45. https://websites.umich.edu/~kathrynd/JEP.FamaandFrench.pdf

Farooq, S. (2020). 04th International Conference on Marketing, Technology & Society. Evaluating Stock Performance with Jensen Alpha and Beta (pp. 1-5). Indian Institute of Management Kozhikode. https://forms.iimk.ac.in/research/markconf20/Proceedings/289.pdf

Forero Laverde, G. (2011). Contrastación de paradigmas de las finanzas: normalidad e hipótesis del mercado eficiente. Aplicaciones en Matlab. ODEON. Observatorio de Economía y Operaciones Numéricas, 5, 168-227. https://revistas.uexternado.edu.co/index.php/odeon/article/download/2870/2511/9596

Gerba, E., & Rubio, M. (2019). Virtual money: How much do cryptocurrencies alter the fundamental functions of money? European Parliament’s Committee on Economic and Monetary Affairs, 1-35. https://www.europarl.europa.eu/cmsdata/207652/12.%20PE%20642.360%20LSE%20final%20publication-original.pdf

Goundar, S. (2021). Introduction to blockchains and cryptocurrencies. University of the South Pacific, Suva, Fiji, 9-19. https://www.researchgate.net/publication/345098872_Introduction_to_Blockchains_and_Cryptocurrencies

Hacibedel, B., & Pérez-Saiz, H. (2023). Assessing macrofinancial risks from crypto assets. International Monetary Fund, 1-35. https://www.imf.org/-/media/Files/Publications/WP/2023/English/wpiea2023214-print-pdf.ashx

Isaac Roque, D., & Caicedo Carrero, A. (2021). Uso del valor económico agregado en empresas no cotizantes en el mercado de valores de Colombia. Revista Universidad y Sociedad, 13(S3), 592-602. https://www.researchgate.net/publication/360791391

Isaac Roque, D., Caicedo Carrero, A., & De la Oliva de Con, F. (2023). Medición de los factores que determinan la creación de valor en los sectores económicos colombianos: periodo 2016-2020. Revista Finanzas y Política Económica, 15(1), 213-244. https://doi.org/10.14718/revfinanzpolitecon.v15.n1.2023.9

Isaac-Roque, D., & Caicedo-Carrero, A. (2023). Relación entre los indicadores financieros del modelo Altman Z y el puntaje Z. Retos. Revista de Ciencias de la Administración y Economía, 13(25), 129-148. https://doi.org/10.17163/ret.n25.2023.09

Jensen, M. C. (1967). The performance of mutual funds in the period 1945-1964. Journal of Finance, 23(2), 389-416. http://dx.doi.org/10.2139/ssrn.244153

Joseph, T. E., Jahanger, A., Chukwuma Onwe, J., & Balsalobre‑Lorente, D. (2024). The implication of cryptocurrency volatility on fve largest African fnancial system stability. Financial Innovation, 10(42). https://doi.org/10.1186/s40854-023-00580-5

Kapoor, T., & Ahuja, L. (2024). Machine learning-based evaluation of financial risks in cryptocurrency. Cyber Security and Digital Forensics (pp. 531-554). Springer, Lecture Notes in Networks and Systems, vol. 896. https://doi.org/10.1007/978-981-99-9811-1_42

Koutmos, D. (2023). Investor sentiment and bitcoin prices. Review of Quantitative Finance and Accounting, 60, 1-29. https://doi.org/10.1007/s11156-022-01086-4

Kufo, A., Gjeci, A., & Pilkati, A. (2024). Unveiling the influencing factors of cryptocurrency return volatility. Risk Financial Manag, 17(1), 12. https://doi.org/10.3390/jrfm17010012

Li, S. (2023). The development of CAPM model and its application in the field of corporate finance. 7th International Conference on Economic Management and Green Development (pp. 1-7). University of Shanghai for Science & Technology. https://www.researchgate.net/publication/375551254_The_Development_of_CAPM_Model_and_Its_Application_in_the_Field_of_Corporate_Finance

Liu, J., & Serletis, A. (2019). Volatility in the cryptocurrency market. Open Economies Review, 1-41. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3422940

Malkiel, B. G. (1982). Risk and return: A new look. National Bureau of Economic Research, 27-46. https://www.nber.org/system/files/chapters/c11393/c11393.pdf

Modigliani, F., & Pogue, G. A. (1973). An introduction to risk and return concepts and evidence. Financial Analysts Journal, 68-80. https://core.ac.uk/download/pdf/4379523.pdf

Motorina, A. (2021). The dynamics of risk and return in the stock market of finland during pre and post Financial crisis periods. Degree Programme in International Business, 1-44. https://www.theseus.fi/bitstream/handle/10024/503768/Thesis_Motorina_Aleksandra.pdf?sequence=2&isAllowed=y

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Bitcoin.org, 1-9. https://bitcoin.org/bitcoin.pdf

Ngoc Nguyen, A. P., Tan Mai, T., Bezbradica, M., & Crane, M. (2023). Volatility and returns connectedness in cryptocurrency markets: Insights from graph-based methods. Physica A: Statistical Mechanics and its Applications, 632(Part 1), 1-22. https://doi.org/10.1016/j.physa.2023.129349.

Phuoc, L. T. (2018). Jensen’s Alpha estimation models in capital asset pricing model. Journal of Asian Finance, Economics and Business, 5(3), 19-29. https://www.researchgate.net/publication/327644564_Jensen’s_Alpha_Estimation_Models_in_Capital_Asset_Pricing_Model

Przyłuska-Schmitt, J., Jegorow, D., & Bučková, J. (2023). The dynamics of cryptocurrency price volatility in the face of the crisis on the example of Bitcoin and Ethereum. Annales Universitatis Mariae Curie-Skłodowska, sectio H – Oeconomia, 57(2), 101-113. https://bibliotekanauki.pl/articles/16729161.pdf

Sa’diyah, C., Widagdo, B., & Fitriasari, F. (2024). Cryptocurrency investment: Evidence of financial literacy, experience, and risk tolerance. Investment Management and Financial Innovations, 21(3), 148-159. http://dx.doi.org/10.21511/imfi.21(3).2024.13

Sherifi, I., Lebid, O., Goncharova, O., Drobyazko, S., & Inna, S. (2024). Financial risks of business management of cryptocurrency operations. TEM Journal, 13(1), 355-364. https://www.temjournal.com/content/131/TEMJournalFebruary2024_355_364.html

Vargas, F. V. (2007). Estadística descriptiva para ingeniería ambiental con SPSS. Impresora Feriva, S. A. https://repositorio.unal.edu.co/handle/unal/52004

Wagdi, O., & Tarek, Y. (2019). The impact of financial risk on systematic risks: International evidence. Journal of Applied Finance & Banking, 9(6), 203-216. https://www.researchgate.net/publication/334560865_The_impact_of_financial_risk_on_systematic_risks_international_evidence

Willis Towers Watson. (2019). Cryptocurrency: Risk management overview. Willis Towers Watson, 1-3. https://www.wtwco.com/-/media/wtw/insights/2019/01/cryptocurrency-risk-management-overview.pdf

Wirth, T., Siegl, T., & Schmitt, M. (2024). Is Bitcoin enough? An analysis of passive cryptocurrency investments. The Journal of Alternative Investments Spring, 76-95. https://www.pm-research.com/content/iijaltinv/26/4/76

Yahoo Finance. (2024, enero 28). Yahoo! Finance. https://finance.yahoo.com/

Zhou, F. (2024). Cryptocurrency: A new player or a new crisis in financial markets? Evolutionary analysis of association and risk spillover based on network science. Statistical Mechanics and its Applications, 648, 129955. https://doi.org/10.1016/j.physa.2024.129955

PDF
EPUB
Métricas

Dimensions

PlumX


Instituciones

Universidad Colegio Mayor de Cundinamarca, Bogotá, D. C., Colombia
Corporación Universitaria Minuto de Dios, Bogotá, D. C., Colombia.
Copyright © 2025. Fundación Universitaria Konrad Lorenz, Colombia

(Visited 89 times, 1 visits today)