Sobre la señal-decisión y su modelación

On signal-decision and its modeling

Carlos N. Bouza Herrera , Agustín Santiago Moreno , José M. Sautto Vallejo

Suma de Negocios, 9(19), 1-7, enero-junio 2018, ISSN 2215-910X

http://dx.doi.org/10.14349/sumneg/2018.V9.N19.A1

Recibido el 14 de Noviembre de 2017
Aceptado el 30 de Enero de 2018
Online el 26 de Febrero de 2018

Resumen

Se propone un modelo para varios enfoques alternativos de la predicción de las probabilidades involucradas a partir de procesar las señales obtenidas enviadas por los jugadores, que pueden ser empresas compitiendo en el mercado. Ellos fijan un nivel mínimo de la utilidad esperada y se interesan en la probabilidad de que se satisfaga esta expectativa. Estos enfoques son analizados usando experimentos de Monte Carlo, desarrollado en el marco de la Teoría de Juegos y diferentes modelos estadísticos para hacer predicciones sobre la probabilidad de éxito o de obtener una cierta utilidad. Se establece el comportamiento de las distintas estrategias propuestas considerando que los errores siguen una distribución normal, doble exponencial y Cauchy. Se hace una comparación de los resultados dados por los algoritmos programados el R y SAS, encontrando que son mejores los de R en términos de δ, sin embargo GLIMIX PRC MIXED de SAS tiene valores menores de V2 en todos los casos.


Palabras clave:
Investigación desarrollo,
cota de la utilidad,
probabilidad de éxito,
predicción de la probabilidad,
GLIM.

Códigos JEL:
C25, C46, C53, C70

Abstract

We propose a model for several alternative approaches to the prediction of the probabilities involved by processing the obtained signals sent by the players, which may be companies competing in the market. They set a minimum level of expected utility and are interested in the probability that this expectation will be satisfied. These approaches are analyzed using Monte Carlo experiments, developed in the framework of Game Theory and different statistical models to make predictions about the probability of success or to obtain a certain utility. The behavior of the different proposed strategies is established, considering that the errors follow a Normal, double Exponential and Cauchy distribution. A comparison is made of the results given by the algorithms programmed R and SAS, finding that R are better in terms of δ, however GLIMIX PRC MIXED of SAS has lower values of V2 in all cases.


Keywords:
Research development,
dimension of the utility,
likelihood of success,
prediction of the probability,
GLIM.

Artículo Completo
Bibliografía

Agresti, A. (1990). Categorical data analysis. Nueva York: Wiley.

Aloysius, J. (2002). Research joint ventures: A cooperative game for competitors. European Journal of Operational Research, 136, 591-602. 10.1016/S0377-2217(01)00064-9

Anderson, N. D. (2015). Teaching signal detection theory with pseudoscience. Frontiers in Psychology, 6, 762. http://doi.org/10.3389/
fpsyg.2015.00762

Atkinson, S., Levula, A., Caldwell, N., Wigand. R. & Hossain, L. (2014). Signalling decision making and taking in a complex world. 2014 International Conference on Information Technology and Management Science (ICITMS 2014). Hong Kong: WIT Transactions on Engineering Sciences.

Barreto, L. & Kypreos, S. (2004). Endogenizing R&D and market experience in the “bottom-up” energy-systems ERIS model. In Technovation, 24, 615-629.

Berenhaut, H. (2002). Score test for heterogeneity and overdispersion in Zero-inflated. Poisson and Binomial Regression Models. The Canadian Journal of Statistics, 30(3), 1-15.

Breswlow, N. E. & Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. Journal of the American Statistical Association, 88, 9-25.

Deng, D. & Paul, S. R. (2002). Score tests for zero-inflationed linear models. Canadian Journal of Statistics. 28, 563-570.

Gentleman, I. (1996). R: A Language for Data Analysis and Graphics. Journal of Computational and Graphical Statistics5, 3.Hadjicostas, P. (2003). Consistency of logistic regression coefficient estimates calculated from training sample. Statistics and Probability Letters, 62, 293-303.

Little, R. y Yau, L. (1996). Intent-to-treat analysis for longitudinal studies with drop-outs. Biometrics, 52(4), 1324-1333. DOI: 10.2307/2532847

Lynn, S. K., Wormwood, J. B., Barrett, L. F. & Quigley, K. S. (2015). Decision making from economic and signal detection perspectives: development of an integrated framework. Frontiers in Psychology, 6, 952. http://doi.org/10.3389/fpsyg.2015.00952

Lynn, S. K. & Barrett, L. F. (2014). “Utilizing” signal detection theory. Psychological Science25(9), 1663-1673. http://doi.org/10.1177/0956797614541991

McCullagh, P. & Nelder, J.A. (1989). Generalized linear model (second edition). Londres: Chapman & Hall. Disponible en http://www.utstat.toronto.edu/~brunner/oldclass/2201s11/readings/glmbook.pdf

McCullagh, C., Searle, S. J. & Neuhaus, J. (2008). Generalized, linear, and mixed models. Hoboken: John Wiley & Sons.

Panajotovic, A. S., & Draca, D. L. (2015). Channel capacity of dual SC system with desired signal decision algorithm in correlated Weibull fading.  12th International Conference on Telecommunication in Modern Satellite, Cable and Broadcasting Services (TELSIKS), Nis, 2015, 263-266. DOI: 10.1109/TELSKS.2015.7357783.

Ray, D. & Vohra, R. (1999). A theory of endogenous coalition structures. Games and Economic Behavior, 26, 286-336.

Schall, R. (1991). Estimation in generalized linear models with ran-
dom effects. Biometrika, 78, 719-727.

Steinert-Threlkeld, S. (2016). Compositional Signaling in a Complex World. Springer Science+Business Media Dordrecht, 25, 379-397.

Veugelers, R. (1998). Collaboration in R&D: An assessment of theoretical and empirical findings. De Economist, 146, 419-443.

Wolfinger, R. B. (1999). Fitting nonlinear mixed models with the new NLMIXED procedure. Proceedings of the Twenty-Fourth Annual Statistics, Data Analysis, and Modeling. Miami Beach: Estados Unidos. Disponible en http://www2.sas.com/proceedings/sugi24/Stats/p287-24.pdf

Yi, S. (1998). Endogenous formation of joint ventures with efficiency gains. RAND Journal of Economics, 29, 610-631.

Yousefi, A., Kakooee, R. & Beheshti, M. (2017). Predicting learning dynamics in multiple-choice decision-making tasks using a variational Bayes technique. 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, 3194-3197. DOI: 10.1109/EMBC.2017.8037536.

PDF

Instituciones

Universidad de La Habana, Cuba
Universidad Autónoma de Guerrero. Acapulco, México
Copyright © 2018. Fundación Universitaria Konrad Lorenz, Colombia

(Visited 2 times, 1 visits today)