Propuesta metodológica multicriterio para la distribución semicontinua de plantas

Multi-criteria methodological proposal for the semi-continuous facility layout

Eliana Ramírez Drada , Vivian Lorena Chud Pantoja , Juan Pablo Orejuela Cabrera

Suma de Negocios, 10(23), 132-145, julio-diciembre 2019, ISSN 2215-910X

http://dx.doi.org/10.14349/sumneg/2019.V10.N23.A6

Recibido el 19 de enero de 2019
Aceptado el 12 de abril de 2019
Online el 22 de abril de 2019

Resumen

El objetivo de este artículo es presentar una metodología para el mejoramiento de la distribución de plantas en las organizaciones, desde un enfoque de solución semicontinuo, considerando aspectos cuantitativos y cualitativos en entornos de múltiples criterios. La metodología propuesta contiene seis fases que incluyen la definición del problema, la generación de alternativas de distribución de planta con técnicas cualitativas como SLP y cuantitativas como CRAFT y QAP, y la selección de la alternativa más adecuada mediante la implementación de TOPSIS. La metodología se implementó en una empresa que fabrica muebles metálicos y se encontró que, después de realizar un análisis de sensibilidad a los pesos de los criterios, el mejor resultado, considerando la robustez en los distintos escenarios, es la segunda solución obtenida con CRAFT, además que la metodología resulta de fácil implementación y presenta un mejoramiento significativo en el desempeño de la empresa.


Palabras clave:
Distribución de planta,
SPL, CRAFT, QAP,
TOPSIS, multicriterio

Códigos JEL:
C44, L23, O14, O11

Abstract

The objective of this article is to present a methodology for improvement of the distribution of plants in organizations, under a semi-continuous solution approach, quantitative and qualitative aspects in multi-criteria environments. The proposed methodology contains six phases that include the definition of the problem, the generation of alternatives for the distribution of the plant with qualitative techniques such as SLP and quantitative ones such as CRAFT and QAP, and the selection of the most appropriate alternative with the implementation of TOPSIS. The methodology was implemented in a company that manufactures metal furniture and it was found that, after performing a sensitivity analysis in the weights of the criteria, the best result, the robustness in the different levels, is the second correct solution with CRAFT, of the methodology, is easy to implement and presents a significant improvement in the performance of the company.


Keywords:
Facility Layout, SPL,
CRAFT, QAP, TOPSIS,
multicriteria

Artículo Completo
Bibliografía

Ahmad, A., Basir, O. A., & Imam, M. H. (2006). An efficient, effective, and robust decoding heuristic for metaheuristics-based layout optimization. International Journal of Production Research, 44(8), 1545-1567. https://doi.org/10.1080/00207540500371873.

Ahmadi, A., Saman, M., Reza, M., & Jokar, A. (2017). A survey on multi-floor facility layout problems. Computers & Industrial Engineering, 107, 158-170. https://doi.org/10.1016/j.cie.2017.03.015.

Aiello, G., Enea, M., & Galante, G. (2006). A multi-objective approach to facility layout problem by genetic search algorithm and Electre method. Robotics and Computer-Integrated Manufacturing, 22(5-6), 447-455. https://doi.org/10.1016/j.rcim.2005.11.002.

Aiello, G., La Scalia, G., & Mario, E. (2013). A non-dominated ranking Multi Objective Genetic Algorithm and electre method for unequal area facility layout problems. Expert Systems with Applications, 40(12), 4812-4819. https://doi.org/10.1016/j.eswa.2013.02.026.

Ali-Naqvi, S., Fahad, M., Atir, M., Zubair, M., & Shehzad, M. M. (2016). Productivity improvement of a manufacturing facility using systematic layout planning. Cogent Engineering, 3(1), 1-13. https://doi.org/10.1080/23311916.2016.1207296.

Allahyari, M. Z., & Azab, A. (2018). Mathematical modeling and multi-start search simulated annealing for unequal-area facility layout problem. Expert Systems With Applications, 91, 46-62. https://doi.org/10.1016/j.eswa.2017.07.049.

Amaral, A. R. S. (2006). On the exact solution of a facility layout problem. European Journal of Operational Research, 173(2), 508-518. https://doi.org/10.1016/j.ejor.2004.12.021.

Amaral, A. R. S. (2008). An exact approach to the one-dimensional facility layout problem. Operations Research, 56(4), 1026-1033. https://doi.org/10.1287/opre.1080.0548.

Atieh, A. M., Kaylani, H., Almuhtady, A., & Al-Tamimi, O. (2016). A value stream mapping and simulation hybrid approach: Application to glass industry. International Journal of Advanced Manufacturing Technology, 84(5-8), 1573-1586. https://doi.org/10.1007/s00170-015-7805-8.

Azadeh, A. (2014). Simulation optimization of facility layout design problem with. International Journal of Industrial Engineering: Theory, Applications and Practice, 21(4), 209-230.

Azadeh, A., & Izadbakhsh, H. R. (2008). A multi-variate/multi-attribute approach for plant layout design. Journal of Industrial Engineering, 15(2), 143-154.

Azadeh, A., Moghaddam, M., Nazari, T., & Sheikhalishahi, M. (2015). Optimization of facility layout design with ambiguity by an efficient fuzzy multivariate approach. International Journal of Advanced Manufacturing Technology, 84(1-4), 565-579. https://doi.org/10.1007/s00170-015-7714-x.

Drira, A., Pierreval, H., & Hajri-Gabouj, S. (2007). Facility layout problems: A survey. Annual Reviews in Control, 31(2), 255-267. https://doi.org/10.1016/j.arcontrol.2007.04.001.

Fafandjel, N., Rubeša, R., & Matulja, T. (2009). Improvement of industrial production process design using systematic layout planning. Strojarstvo, 51(3), 177-186.

Fernández, Á. S., & Soares de Mello, J. C. (2015). Análisis del método ordinal de decisión multicriterio del Veto. Ingeniare. Revista Chilena de Ingeniería, 23(4), 556-568. https://doi.org/10.4067/S0718-33052015000400007.

Galindo, A., & Tapia, M. (2008). SLP: una forma sencilla de analizar la distribución física de su fábrica. Ingeniería Industrial, XXIX (2), 1-6.

Hadi-Vencheh, A., & Mohamadghasemi, A. (2013). An integrated AHP-NLP methodology for facility layout design. Journal of Manufacturing Systems, 32(1), 40-45. https://doi.org/10.1016/j.jmsy.2012.07.009.

Hari-Prasad, N., Rajyalakshmi, G., & Sreenivasulu-Reddy, A. (2014). A typical manufacturing plant layout design using CRAFT algorithm. In Procedia engineering (vol. 97, pp. 1808-1814). Elsevier B.V. https://doi.org/10.1016/j.proeng.2014.12.334.

Hasda, R. K., Bhattacharjya, R. K., & Bennis, F. (2017). Modified genetic algorithms for solving facility layout problems. International Journal on Interactive Design and Manufacturing, 11(3), 713-725. https://doi.org/10.1007/s12008-016-0362-z.

Hosseini-Nasab, H., Fereidouni, S., Fatemi-Ghomi, S. M. T., & Fakhrzad, M. B. (2017). Classification of facility layout problems: A review study. International Journal of Advanced Manufacturing Technology, 94(1-4), 957-977. https://doi.org/10.1007/s00170-017-0895-8.

Hu, M. H., & Wang, M. J. (2004). Using genetic algorithms on facilities layout problems. International Journal of Advanced Manufacturing Technology, 23(3-4), 301-310. https://doi.org/10.1007/s00170-003-1637-7.

Ingole, S., & Singh, D. (2017). Unequal-area, fixed-shape facility layout problems using the firefly algorithm. Engineering Optimization, 49(7), 1097-1115. https://doi.org/10.1080/0305215X.2016.1235327.

Ishizaka, A., & Nemery, P. (2013). Multi-criteria decision analysis methods and software (L. John Wiley & Sons, Ed.). (Firts edit). https://doi.org/10.1002/9781118644898.

Leyva, M., Mauricio, D., Salas-Bacalla, J., & Bacalla, J. S. (2016). Una taxonomía del problema de distribución de planta por procesos y sus métodos de solución. Industrial Data, 16(2), 132. https://doi.org/10.15381/idata.v16i2.11930.

Lin, Q. L., Liu, H. C., Wang, D. J., & Liu, L. (2013). Integrating systematic layout planning with fuzzy constraint theory to design and optimize the facility layout for operating theatre in hospitals. Journal of Intelligent Manufacturing, 26(1), 87-95. https://doi.org/10.1007/s10845-013-0764-8.

Liu, J., Zhang, H., He, K., & Jiang, S. (2018). Multi-objective particle swarm optimization algorithm based on objective space division for the unequal-area facility layout problem. Expert Systems with Applications, 102, 179-192. https://doi.org/10.1016/j.eswa.2018.02.035.

Maniya, K. D., & Bhatt, M. G. (2011). An alternative multiple attribute decision making methodology for solving optimal facility layout design selection problems. Computers and Industrial Engineering, 61(3), 542-549. https://doi.org/10.1016/j.cie.2011.04.009.

Mejía, H., Wilches, M. J., Galofre, M., & Montenegro, Y. (2011). Aplicación de metodologías de distribución de plantas para la configuración de un centro de distribución. Scientia et Technica, 3(49), 63-68. https://doi.org/10.22517/23447214.1473.

Mohamadghasemi, A., & Hadi-Vencheh, A. (2012). An integrated synthetic value of fuzzy judgments and nonlinear programming methodology for ranking the facility layout patterns. Computers and Industrial Engineering, 62(1), 342-348. https://doi.org/10.1016/j.cie.2011.10.004.

Muther, R. (1970). Distribución en planta (2ª ed.). Barcelona: Editorial Hispano Europea.

Muther, R., & Hales, L. (2015). Sytematic layout planning (4th ed.). USA: Management & Industrial Research Publications.

Niebles, F., Escobar, I., & Agudelo, L. (2017). Advances in Swarm Intelligence, 10385, 59-75. https://doi.org/10.1007/978-3-319-61824-1.

Paredes, A. M., Peláez, K. A., Chud, V. L., Payan, J. L., & Alarcón, D. R. (2016). Rediseño de una planta productora de lácteos mediante la utilización de las metodologías SLP, CRAFT y QAP (Redesign of a dairy production plant using SLP, CRAFT and QAP methodologies). Scientia et Technica, 21(4), 318-326.

Parra, O. (2017). Implementación de una aplicación para server calculation & facility layout planning (sc-flp). pp. 1-8. http://repository.poligran.edu.co/bitstream/handle/10823/516/FICB-PG%20D-IIND%20Articulo%20de%20investigacio….%20oparraor.pdf?sequence=1&isAllowed=y.

Pinto-Wilsten, J., & Shayan, E. (2007). Layout design of a furniture production line using formal methods. Journal of Industrial and Systems Engineering, 1(1), 81-96.

Pourvaziri, H., & Naderi, B. (2014). A hybrid multi-population genetic algorithm for the dynamic facility layout problem. Applied Soft Computing Journal, 24, 457-469. https://doi.org/10.1016/j.asoc.2014.06.051.

Ramkumar, A. S., Ponnambalam, S. G., & Jawahar, N. (2007). An evolutionary search heuristic for solving QAP formulation in facility layout design. In 2007 IEEE Congress on Evolutionary Computation, vols. 1-10, Proceedings (p. 4005+). 345 E 47TH ST, New York, NY 10017 USA: IEEE. https://doi.org/10.1109/CEC.2007.4424993.

Ramkumar, A. S., Ponnambalam, S. G., & Jawahar, N. (2009). A new iterated fast local search heuristic for solving QAP formulation in facility layout design. Robotics and Computer-Integrated Manufacturing, 25(3), 620-629. https://doi.org/10.1016/j.rcim.2008.03.022.

Şahinkoç, M., & Bilge, Ü. (2018). Facility layout problem with QAP formulation under scenario-based uncertainty. INFOR: Information Systems and Operational Research, 56(4), 406-427. https://doi.org/10.1080/03155986.2018.1424445.

Salazar, A. F., Vargas, L. C., Añasco, C. E., & Orejuela, J. P. (2010). Propuesta de distribución en planta bietapa en ambientes de manufactura flexible mediante proceso analítico jerárquico. Revista EIA, 14, 161-175.

Singh, S. P., & Singh, V. K. (2011). Three-level AHP-based heuristic approach for a multi-objective facility layout problem. International Journal of Production Research, 49(4), 1105-1125. https://doi.org/10.1080/00207540903536148.

Subramanian, N., & Ramanathan, R. (2012). A review of applications of analytic hierarchy process in operations management. International Journal of Production Economics, 138(2), 215-241. https://doi.org/10.1016/j.ijpe.2012.03.036.

Tao, J., Wang, P., Qiao, H., & Tang, Z. (2013). Facility layouts based on differential evolution algorithm. 2013 IEEE International Conference on Robotics and Biomimetics, ROBIO 2013 (December), 1778-1783. https://doi.org/10.1109/ROBIO.2013.6739725.

Tompkins, J., White, J., Bozer, Y., & Tanchoco, J. (2011). Planeación de instalaciones (4ª ed.). Cengage Learning Editores, Ed.

Van Donk, D. P., & Gaalman, G. (2004). Food safety and hygiene: Systematic layout planning of food processes. Chemical Engineering Research and Design, 82(A11), 1485-1493.

Venkata, R. (2013). Decision making in the manufacturing enviroment using graph theory and fuzzy multiple attribute decision making methods. Springer Series in Advanced Manufacturing. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/B9781856174787500118.

Yang, T., & Hung, C. C. (2007). Multiple-attribute decision making methods for plant layout design problem. Robotics and Computer-Integrated Manufacturing, 23(1), 126-137. https://doi.org/10.1016/j.rcim.2005.12.002.

Ying, C., Nyeoh, Ab-Samat, H., & Kamaruddin, S. (2016). Practical production layout design for multiproduct and small-lot-size production: A case study. Jurnal Teknologi, 78(7), 161-175.

Zhou, J., Love, P. E. D., Teo, K. L., & Luo, H. (2017). An exact penalty function method for optimising QAP formulation in facility layout problem. International Journal of Production Research, 55(10), 2913-2929. https://doi.org/10.1080/00207543.2016.1229068.

PDF
Métricas

Dimensions

PlumX

Instituciones

Universidad del Valle, Palmira, Valle del Cauca, Colombia
Universidad del Valle sede Zarzal, Zarzal, Valle del Cauca, Colombia
Universidad del Valle, Cali, Valle del Cauca, Colombia
Copyright © 2019. Fundación Universitaria Konrad Lorenz, Colombia

(Visited 3 times, 1 visits today)