Métodos aplicados a la estimación de gases de efecto invernadero en los embalses de hidroeléctricas
Methods applied to the estimation of Greenhouse Gases in hydroelectric reservoirs
Rhonmer Orlando Pérez-Cedeño , Carmen Luisa Vásquez Stanescu , Maritza Torres-Samuel y Rodrigo Ramírez-Pisco
Suma de Negocios, 13(28), 50-56, enero-junio 2022, ISSN 2215-910X
https://doi.org/10.14349/sumneg/2022.V13.N28.A6
Recibido el 18 de julio del 2022
Aceptado el 23 de septiembre del 2022
Online el 7 de octubre del 2022
Introducción/objetivo: las emisiones de gases de efecto invernadero (GEI) de origen natural han aumentado por las acciones antropogénicas, y amenazan al planeta con un desequilibrio ambiental. Los embalses para almacenar agua, que después se utiliza para mover las turbinas de centrales hidroeléctricas, acumulan sedimentos generando GEI. En este trabajo se analizan los métodos empleados para estimar las emisiones de GEI en embalses, clasificando las publicaciones científicas encontradas en los motores de búsqueda de ScienceDirect y Google Scholar.
Metodología: el método analítico utiliza una expresión booleana para recopilar información en los motores de búsqueda indicados y extraer la bibliografía relevante, considerando factores como la temperatura del agua, la ubicación geográfica, el tipo y la superficie del embalse, el tipo de gas y la tecnología, lo que atribuye un valor de pertinencia a cada característica para elaborar una matriz de resultados.
Resultados: los resultados muestran que más del 50 % se basan en estimaciones de GEI y el resto en mediciones directas en los embalses. Además, la contribución de la inteligencia artificial como técnica de estimación es menor al 6 %.
Conclusiones: finalmente, las regiones mundiales donde se realizan los estudios están distribuidas proporcionalmente y el análisis de literatura científica indica versatilidad en los métodos de estimación de GEI en embalses hidroeléctricos.
Palabras clave:
Embalses hidroeléctricos,
gases de efecto invernadero,
dióxido de carbono,
metano,
óxido nitroso.
Códigos JEL:
Q4, Q48, Q51, Q54
Introduction/objective: greenhouse gases (GHG) emissions of natural origin have increased due to anthropogenic actions, and threaten the planet with environmental imbalance. Reservoirs for storing water, which is later used to drive the turbines of hydroelectric power plants, accumulate sediments, generating GHG. This paper analyzes the methods used to estimate GHG emissions in reservoirs, classifying scientific publications found in the ScienceDirect and Google Scholar search engines.
Methodology: the analytical method uses a Boolean expression to collect information in the indicated search engines and extract the relevant literature considering factors such as water temperature, geographic location, reservoir type and surface area, gas type and technology, which attributes a relevance value to each characteristic to elaborate a matrix of results.
Results: the results show that more than 50 % are based on GHG estimates and the rest on direct measurements in the reservoirs. In addition, the contribution of artificial intelligence as an estimation technique is less than 6 %.
Conclusions: finally, the world regions where studies are conducted are proportionally distributed and the analysis of scientific literature indicates versatility in GHG estimation methods in hydropower reservoirs.
Keywords:
Hydropower reservoirs,
greenhouse gas,
carbon dioxide,
methane,
nitrous oxide.
Araujo-Suárez, G., & Vásquez Stanescu, C. L. (2021). Estrategias de rechazo de carga para mitigar la recuperación retardada de tensión inducida por falla: desarrollo y tendencias. Publicaciones en Ciencias y Tecnología, 15(2), 51-60.
https://doi.org/10.13140/RG.2.2.24721.10081
Badaro, S., Ibáñez, L. J., & Agüero, M. (2013). Sistemas expertos: fundamentos, metodologías y aplicaciones. Ciencia y Tecnología, 1(13), 349-364. https://doi.org/10.18682/cyt.v1i13.122
Bayazıt, Y. (2021). The effect of hydroelectric power plants on the carbon emission: An example of Gokcekaya dam, Turkey. Renewable Energy, 170, 181-187. https://doi.org/10.1016/j.renene.2021.01.130
Católico, A. C. C., Maestrini, M., Strauch, J. C. M., Giusti, F., & Hunt, J. (2021). Socioeconomic impacts of large hydroelectric power plants in Brazil: A synthetic control assessment of Estreito hydropower plant. Renewable and Sustainable Energy Reviews, 151, 111508. https://doi.org/10.1016/j.rser.2021.111508
Cifuentes, M. R. (2020). Estudio ecohidrológico del embalse eutrófico Lago del Fuerte (Tandil, Provincia de Buenos Aires) [tesis de doctorado, Universidad Nacional de La Plata].
http://sedici.unlp.edu.ar/handle/10915/112544
De Sousa Brandão, I. L., Mannaerts, C. M., De Sousa Brandão, I. W., Queiroz, J. C. B., Verhoef, W., Fonseca Saraiva, A. C., & Dantas Filho, H. A. (2019). Conjunctive use of in situ gas sampling and chromatography with geospatial analysis to estimate greenhouse gas emissions of a large Amazonian hydroelectric reservoir. Science of the Total Environment, 650, 394-407. https://doi.org/10.1016/j.scitotenv.2018.08.403
Demarty, M., Bastien, J., & Tremblay, A. (2011). Annual follow-up of gross diffusive carbon dioxide and methane emissions from a boreal reservoir and two nearby lakes in Québec, Canada. Biogeosciences, 8(1), 41-53. https://doi.org/10.5194/bg-8-41-2011
Escriva-Bou, A., Lund, J. R., Pulido-Velázquez, M., Hui, R., & Medellín-Azuara, J. (2018). Developing a water-energy-GHG emissions modeling framework: Insights from an application to California’s water system. Environmental Modelling and Software, 109, 54-65. https://doi.org/10.1016/j.envsoft.2018.07.011
Gómez-Núñez, A. J., Batagelj, V., Vargas-Quesada, B., Moya-Anegón, F., & Chinchilla-Rodríguez, Z. (2014). Optimizing SCImago Journal & Country Rank classification by community detection. Journal of Informetrics, 8(2), 369-383.
https://doi.org/10.1016/j.joi.2014.01.011
Gómez-Sanabria, A., Kiesewetter, G., Klimont, Z., Schoepp, W., & Haberl, H. (2022). Potential for future reductions of global GHG and air pollutants from circular waste management systems. Nature Communications, 13, 106.
https://doi.org/10.1038/s41467-021-27624-7
Guamán Gómez, V. J., & Espinoza Freire, E. E. (2022). Educación para el cambio climático. Revista Metropolitana de Ciencias Aplicadas, 5(2), 17-24. https://remca.umet.edu.ec/index.php/REMCA/article/view/493
Intergovernmental Panel on Climate Change. (2006a). Appendix 2: Estimating CO2 emissions from lands converted to permanently flooded lands. https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_p_Ap2_WetlandsCO2.pdf
Intergovernmental Panel on Climate Change. (2006b). Appendix 3: CH4 Emissions from Flooded Land: Basis for Future Methodological Development. https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_p_Ap3_WetlandsCH4.pdf
International Hydropower Association. (2022). Slow hydropower growth is a stark wake-up call to governments on climate. Report. https://www.hydropower.org/news/slow-hydropower-growth-is-a-stark-wake-up-call-to-governments-on-climate
Ion, I. V., & Ene, A. (2021). Evaluation of greenhouse gas emissions from reservoirs: A review. Sustainability, 13(21), 11621. https://doi.org/10.3390/su132111621
León, J., & Rojas, M. (2020). Estimación de flujos difusivos de CO2 en embalses tropicales mediante el uso conjunto de la teledectección, la modelación de concentraciones superficiales del gas y K600. Revista de Investigación Agraria y Ambiental, 11(2), 179-196. https://doi.org/10.22490/21456453.3587
Levasseur, A., Mercier-Blais, S., Prairie, Y. T., Tremblay, A., & Turpin, C. (2021). Improving the accuracy of electricity carbon footprint: Estimation of hydroelectric reservoir greenhouse gas emissions. Renewable and Sustainable Energy Reviews, 136(1), 110433. https://doi.org/10.1016/j.rser.2020.110433
Li, S., Bush, R. T., Santos, I. R., Zhang, Q., Song, K., Mao, R., Wen, Z., & Lu, X. X. (2018). Large greenhouse gases emissions from China’s lakes and reservoirs. Water Research, 147, 1-45.
https://doi.org/10.1016/j.watres.2018.09.053
Lu, S., Dai, W., Tang, Y., & Guo, M. (2020). A review of the impact of hydropower reservoirs on global climate change. Science of the Total Environment, 711, 134996. https://doi.org/10.1016/j.scitotenv.2019.134996
Martín-Martín, A., Orduna-Malea, E., Thelwall, M., & López-Cózar, E. D. (2018). Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics, 12(4), 1160-1177.
https://doi.org/10.1016/j.joi.2018.09.002
Meteo Navarra. (2022). Distribución de los climas por zonas latitudinales. Clasificación Climática de Köppen.
http://meteo.navarra.es/definiciones/koppen.cfm
Montes-Pérez, J. J., Obrador, B., Conejo-Orosa, T., Rodríguez, V., Marcé, R., Escot, C., Reyes, I., Rodríguez, J., & Moreno-Ostos, E. (2022). Spatio-temporal variability of carbon dioxide and methane emissions from a Mediterranean reservoir. Limnetica, 41(1), 43-60. https://doi.org/10.23818/limn.41.04
Pérez Cedeño, R. O., Vásquez Stanescu, C. L., Suárez-Matarrita, L., Vásquez Stanescu, R. N., Osal Herrera, W. J., & Ramírez-Pisco, R. (2020). Methane emissions and energy density of reservoirs of hydroelectric plants in Venezuela. En C. Meza, L. Hernández-Callejo, S. Nesmachnow, A. Ferreira, & V. Leite (Eds.), Proceedings of the III Ibero-American Conference on Smart Cities (pp. 728-739). https://revistas.tec.ac.cr/index.php/memorias/issue/view/575/93
Pérez, R., & Osal, W. (2019a). Greenhouse gases for generation of electricity in non-residential users of Venezuela 2006-2017. Publicaciones en Ciencias y Tecnología, 13(1), 30-40.
https://doi.org/10.13140/RG.2.2.15226.64965
Pérez, R., & Osal, W. (2019b). Impact of Latin American public transport systems on urban mobility and the environment. Publicaciones en Ciencias y Tecnología, 13(2), 38-53.
https://doi.org/10.13140/RG.2.2.14346.70083
Qin, Y., Gou, Y., Yu, Z., & Tan, W. (2021). Effects of environmental factors on the methane and carbon dioxide fluxes at the middle of Three Gorges Reservoir. Journal of Water and Climate Change, 12(8), 4007-4020. https://doi.org/10.2166/wcc.2021.081
Resende, J. F., Mannich, M., & Fernandes, C. V. S. (2020). Calibration of a management-oriented greenhouse gas emission model for lakes and reservoirs under different distribution of environmental data. Science of the Total Environment, 734, 138791. https://doi.org/10.1016/j.scitotenv.2020.138791
Ruiz-Vásquez, M., Rodríguez, D., Chica, E., & Peñuela, G. (2019). Calibration of two mathematical models at laboratory scale for predicting the generation of methane and carbon dioxide at the entrance point of the Chucurí river to the Topocoro Reservoir, Colombia. Ingeniería y Competitividad, 21(1), 11-22. https://doi.org/10.25100/iyc.v21i1.7651
Rust, F., Bodmer, P., & Del Giorgio, P. (2022). Modeling the spatial and temporal variability in surface water CO2 and CH4 concentrations in a newly created complex of boreal hydroelectric reservoirs. Science of The Total Environment, 815, 152459. https://doi.org/10.1016/j.scitotenv.2021.152459
Sánchez Barbosa, L., Lucena Mogollón, M. G., & Vásquez Stanescu, C. (2017). Emisiones de mercurio por uso de las lámparas fluorescentes compactas y por generación de energía eléctrica a base de combustibles fósiles. Revista Científica Ecociencia, 4(5), 1-18. https://doi.org/10.21855/ecociencia.45.51
Sánchez Barbosa, L., Vásquez Stanescu, C. L., & Viloria, A. (2018). Políticas públicas en el sector suministro de energía e indicadores energéticos del desarrollo sostenible en Latinoamérica. Revista Científica Compendium, 21(41), 1-14. https://revistas.uclave.org/index.php/Compendium/article/view/2056
Song, C., Gardner, K. H., Klein, S. J. W., Souza, S. P., & Mo, W. (2018). Cradle-to-grave greenhouse gas emissions from dams in the United States of America. Renewable and Sustainable Energy Reviews, 90(1), 945-956. https://doi.org/10.1016/j.rser.2018.04.014
Soued, C., & Prairie, Y. T. (2021). Changing sources and processes sustaining surface CO2 and CH4 fluxes along a tropical river to reservoir system. Biogeosciences, 18(4), 1333-1350.
https://doi.org/10.5194/bg-18-1333-2021
Tober, M. (2011). PubMed, ScienceDirect, Scopus or Google Scholar-Which is the best search engine for an effective literature research in laser medicine? Medical Laser Application, 26(3), 139-144. https://doi.org/10.1016/j.mla.2011.05.006
Torres-Samuel, M., Vásquez, C. L., Luna Cardozo, M., Bucci, N., Viloria, A., & Cabrera, D. (2019). Clustering of Top 50 Latin American Universities in SIR, QS, ARWU, and Webometrics Rankings. Procedia Computer Science, 160, 467-472.
https://doi.org/10.1016/j.procs.2019.11.063
Varol, M. (2019). CO2 emissions from hydroelectric reservoirs in the Tigris River basin, a semi-arid region of southeastern Turkey. Journal of Hydrology, 569, 782-794.
https://doi.org/10.1016/j.jhydrol.2019.01.002
Waldo, S., Deemer, B. R., Bair, L. S., & Beaulieu, J. J. (2021). Greenhouse gas emissions from an arid-zone reservoir and their environmental policy significance: Results from existing global models and an exploratory dataset. Environmental Science and Policy, 120, 53-62. https://doi.org/10.1016/j.envsci.2021.02.006
Wang, F., Lang, Y., Liu, C. Q., Qin, Y., Yu, N., & Wang, B. (2019). Flux of organic carbon burial and carbon emission from a large reservoir: Implications for the cleanliness assessment of hydropower. Science Bulletin, 64(9), 603-611.
https://doi.org/10.1016/j.scib.2019.03.034
Wang, W., Roulet, N. T., Kim, Y., Strachan, I. B., Del Giorgio, P., Prairie, Y. T., & Tremblay, A. (2018). Modelling CO2 emissions from water surface of a boreal hydroelectric reservoir. Science of the Total Environment, 612, 392-404. https://doi.org/10.1016/j.scitotenv.2017.08.203
World Integrated Trade Solution. (2010). Country Codes. https://wits.worldbank.org/wits/wits/WITSHELP-es/content/codes/country_codes.htm
Xu, H., Ou, L., Li, Y., Hawkins, T. R., & Wang, M. (2022). Life cycle greenhouse gas emissions of biodiesel and renewable diesel production in the United States. Enviromental Science Technology, 56, 7512-7521. https://doi.org/10.1021/acs.est.2c00289
Instituciones
Universidad Nacional Experimental Politécnica Antonio José de Sucre (UNEXPO), Venezuela
Universidad Carlemany, San Julián de Loria, Andorra
Copyright © 2022. Fundación Universitaria Konrad Lorenz, Colombia